An engineer is to design a human powered submarine for a design competition. The overall length of the prototype submarine is 2.24 m and its engineer designers hope that it can travel fully submerged through water at 0.560 m/s. The water is freshwater (a lake) at 7-15°C (p=999.1 kg/m3 and u= 1.138 ×103 kg/m-st. The design team builds a one-eighth scale model to test in their university's wind tunnel. The air in the wind tunnel is at 25°C (p= 1.180 kg/m3 and u = 1.849 ×10-5 kg/m-s) and at one standard atmosphere pressure. At what air speed do they need to run the wind tunnel in order to achieve similarity?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.70P
icon
Related questions
Question

An engineer is to design a human powered submarine for a design competition. The overall length of the prototype submarine is 2.24 m and its engineer designers hope that it can travel fully submerged through water at 0.560 m/s. The water is freshwater (a lake) at 7-15°C (p=999.1 kg/m3 and u= 1.138 ×103 kg/m-st. The design team builds a one-eighth scale model to test in their university's wind tunnel. The air in the wind tunnel is at 25°C (p= 1.180 kg/m3 and u = 1.849 ×10-5 kg/m-s) and at one standard atmosphere pressure. At what air speed do they need to run the wind tunnel in order to achieve similarity?

Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning