Week3_Assignment
docx
keyboard_arrow_up
School
New England College *
*We aren’t endorsed by this school
Course
CRN129
Subject
Electrical Engineering
Date
Jan 9, 2024
Type
docx
Pages
13
Uploaded by MatePuppyPerson3950
Week3_Assignment
2023-11-22
Sections: Introduction, Prerequisites, nycflights13, dplyr Basics, Filter Rows with
filter(), Comparisons, Logical Operators, Missing Values.
Exercises: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 3
library
(tidyverse)
#calling the "tidyverse" library
## Warning: package 'tidyverse' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## Warning: package 'lubridate' was built under R version 4.1.3
## -- Attaching core tidyverse packages ------------------------
tidyverse 2.0.0 --
## v dplyr
1.1.2
v readr
2.1.4
## v forcats
1.0.0
v stringr
1.5.0
## v ggplot2
3.4.3
v tibble
3.2.1
## v lubridate 1.9.2
v tidyr
1.3.0
## v purrr
1.0.1
## -- Conflicts ------------------------------------------
tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to
force all conflicts to become errors
library
(nycflights13)
#calling the "nycflights13" library
## Warning: package 'nycflights13' was built under R version 4.1.3
nycflights13
::
flights
## # A tibble: 336,776 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
1
517
515
2
830
819
##
2
2013
1
1
533
529
4
850
830
##
3
2013
1
1
542
540
2
923
850
##
4
2013
1
1
544
545
-1
1004
1022
##
5
2013
1
1
554
600
-6
812
837
##
6
2013
1
1
554
558
-4
740
728
##
7
2013
1
1
555
600
-5
913
854
##
8
2013
1
1
557
600
-3
709
723
##
9
2013
1
1
557
600
-3
838
846
## 10
2013
1
1
558
600
-2
753
745
## # i 336,766 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.1 Had an arrival delay of two or more hours
filter
(flights, arr_delay
>=
120
)
## # A tibble: 10,200 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
1
811
630
101
1047
830
##
2
2013
1
1
848
1835
853
1001
1950
##
3
2013
1
1
957
733
144
1056
853
##
4
2013
1
1
1114
900
134
1447
1222
##
5
2013
1
1
1505
1310
115
1638
1431
##
6
2013
1
1
1525
1340
105
1831
1626
##
7
2013
1
1
1549
1445
64
1912
1656
##
8
2013
1
1
1558
1359
119
1718
1515
##
9
2013
1
1
1732
1630
62
2028
1825
## 10
2013
1
1
1803
1620
103
2008
1750
## # i 10,190 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.2 Flew to Houston (IAH or HOU)
filter
(flights, dest
==
'IAH'
|
dest
==
'HOU'
)
## # A tibble: 9,313 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
1
517
515
2
830
819
##
2
2013
1
1
533
529
4
850
830
##
3
2013
1
1
623
627
-4
933
932
##
4
2013
1
1
728
732
-4
1041
1038
##
5
2013
1
1
739
739
0
1104
1038
##
6
2013
1
1
908
908
0
1228
1219
##
7
2013
1
1
1028
1026
2
1350
1339
##
8
2013
1
1
1044
1045
-1
1352
1351
##
9
2013
1
1
1114
900
134
1447
1222
## 10
2013
1
1
1205
1200
5
1503
1505
## # i 9,303 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.3 Were operated by United, American, or Delta
filter
(flights, carrier
==
'AA'
|
carrier
==
'DL'
|
carrier
==
'UA'
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
## # A tibble: 139,504 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
1
517
515
2
830
819
##
2
2013
1
1
533
529
4
850
830
##
3
2013
1
1
542
540
2
923
850
##
4
2013
1
1
554
600
-6
812
837
##
5
2013
1
1
554
558
-4
740
728
##
6
2013
1
1
558
600
-2
753
745
##
7
2013
1
1
558
600
-2
924
917
##
8
2013
1
1
558
600
-2
923
937
##
9
2013
1
1
559
600
-1
941
910
## 10
2013
1
1
559
600
-1
854
902
## # i 139,494 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.4 Departed in summer (July, August, and September)
filter
(flights, month
%in%
c
(
7
,
8
,
12
))
## # A tibble: 86,887 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
12
1
13
2359
14
446
445
##
2
2013
12
1
17
2359
18
443
437
##
3
2013
12
1
453
500
-7
636
651
##
4
2013
12
1
520
515
5
749
808
##
5
2013
12
1
536
540
-4
845
850
##
6
2013
12
1
540
550
-10
1005
1027
##
7
2013
12
1
541
545
-4
734
755
##
8
2013
12
1
546
545
1
826
835
##
9
2013
12
1
549
600
-11
648
659
## 10
2013
12
1
550
600
-10
825
854
## # i 86,877 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.5 Arrived more than two hours late, but didn’t leave late
filter
(flights, arr_delay
>
120
&
dep_delay
<=
0
)
## # A tibble: 29 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
27
1419
1420
-1
1754
1550
##
2
2013
10
7
1350
1350
0
1736
1526
##
3
2013
10
7
1357
1359
-2
1858
1654
##
4
2013
10
16
657
700
-3
1258
1056
##
5
2013
11
1
658
700
-2
1329
1015
##
6
2013
3
18
1844
1847
-3
39
2219
##
7
2013
4
17
1635
1640
-5
2049
1845
##
8
2013
4
18
558
600
-2
1149
850
##
9
2013
4
18
655
700
-5
1213
950
## 10
2013
5
22
1827
1830
-3
2217
2010
## # i 19 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#1.6 Were delayed by at least an hour, but made up over 30 minutes in
flight
filter
(flights, dep_delay
>=
60
&
arr_delay
<=
30
)
## # A tibble: 239 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
3
1850
1745
65
2148
2120
##
2
2013
1
3
1950
1845
65
2228
2227
##
3
2013
1
3
2015
1915
60
2135
2111
##
4
2013
1
6
1019
900
79
1558
1530
##
5
2013
1
7
1543
1430
73
1758
1735
##
6
2013
1
11
1020
920
60
1311
1245
##
7
2013
1
12
1706
1600
66
1949
1927
##
8
2013
1
12
1953
1845
68
2154
2137
##
9
2013
1
19
1456
1355
61
1636
1615
## 10
2013
1
21
1531
1430
61
1843
1815
## # i 229 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#3 How many flights have a missing dep_time? What other variables are
missing? What might these rows represent?
count
(
filter
(flights,
is.na
(dep_time)))
## # A tibble: 1 x 1
##
n
##
<int>
## 1
8255
colSums
(
!
is.na
(flights))
==
0
##
year
month
day
dep_time
sched_dep_time
##
FALSE
FALSE
FALSE
FALSE
FALSE
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
##
dep_delay
arr_time sched_arr_time
arr_delay
carrier
##
FALSE
FALSE
FALSE
FALSE
FALSE
##
flight
tailnum
origin
dest
air_time
##
FALSE
FALSE
FALSE
FALSE
FALSE
##
distance
hour
minute
time_hour
##
FALSE
FALSE
FALSE
FALSE
#Total number of flights with missing dep_time --> 8255
#Other variables that are missing include dep_delay and arr_time.
#This means that either the flights was canceled or got mischeduled.
Sections: Arrange Rows with Rows()
Exercises: 1 and 2
#1. How could you use arrange() to sort all missing values to the
start? (Hint: use is.na()).
arrange
(flights, dep_time)
%>%
tail
()
## # A tibble: 6 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
## 1
2013
9
30
NA
1842
NA
NA
2019
## 2
2013
9
30
NA
1455
NA
NA
1634
## 3
2013
9
30
NA
2200
NA
NA
2312
## 4
2013
9
30
NA
1210
NA
NA
1330
## 5
2013
9
30
NA
1159
NA
NA
1344
## 6
2013
9
30
NA
840
NA
NA
1020
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
#2. Sort flights to find the most delayed flights. Find the flights
that left earliest
arrange
(flights,
desc
(dep_delay))
## # A tibble: 336,776 x 19
##
year month
day dep_time sched_dep_time dep_delay arr_time
sched_arr_time
##
<int> <int> <int>
<int>
<int>
<dbl>
<int>
<int>
##
1
2013
1
9
641
900
1301
1242
1530
##
2
2013
6
15
1432
1935
1137
1607
2120
##
3
2013
1
10
1121
1635
1126
1239
1810
##
4
2013
9
20
1139
1845
1014
1457
2210
##
5
2013
7
22
845
1600
1005
1044
1815
##
6
2013
4
10
1100
1900
960
1342
2211
##
7
2013
3
17
2321
810
911
135
1020
##
8
2013
6
27
959
1900
899
1236
2226
##
9
2013
7
22
2257
759
898
121
1026
## 10
2013
12
5
756
1700
896
1058
2020
## # i 336,766 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight
<int>,
## #
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
distance <dbl>,
## #
hour <dbl>, minute <dbl>, time_hour <dttm>
Sections: Select columns with select()
Exercises: 3
#3. What does the any_of() function do? Why might it be helpful in
conjunction with this vector?
vars
<-
c
(
"year"
,
"month"
,
"day"
,
"dep_delay"
,
"arr_delay"
)
select
(flights,
any_of
(vars))
## # A tibble: 336,776 x 5
##
year month
day dep_delay arr_delay
##
<int> <int> <int>
<dbl>
<dbl>
##
1
2013
1
1
2
11
##
2
2013
1
1
4
20
##
3
2013
1
1
2
33
##
4
2013
1
1
-1
-18
##
5
2013
1
1
-6
-25
##
6
2013
1
1
-4
12
##
7
2013
1
1
-5
19
##
8
2013
1
1
-3
-14
##
9
2013
1
1
-3
-8
## 10
2013
1
1
-2
8
## # i 336,766 more rows
#It can be helpful since the names of the variables, which can be
many, can be stored in a variable and passed to any_of()
Sections: Add new variables with mutate(), Useful Creation Functions
Exercises: 2, 4, 5
#2. Compare air_time with arr_time - dep_time. What do you expect to
see? What do you see? What do you need to do to fix it?
flights_difference
<-
mutate
(flights,
dep_time_min =
(dep_time
%/%
100
)
*
60
+
dep_time
%%
100
,
arr_time_min =
(arr_time
%/%
100
)
*
60
+
arr_time
%%
100
,
difference_time =
arr_time_min
-
dep_time_min
)
nrow
(
filter
(flights_difference, air_time
!=
difference_time))
/
nrow
(flights)
*
100
## [1] 97.14172
#Logically, we expect to see air_time = arr_time - dep_time.
#However, we see that 92.64% of the flights are not aligned with this.
The calculated difference_time and air_time are dissimilar. The
fundamental cause of the discrepancy is that the initial values of
arr_time and dep_time are not really continuous numbers. This is fixed
by converting arr_time to minutes since midnight and then
recalculating flight_time.
#4. Find the 10 most delayed flights using a ranking function. How do
you want to handle ties? Carefully read the documentation for
min_rank().
head
(
select
(
arrange
(
mutate
(flights,
total_delay =
dep_delay
+
arr_delay),
desc
(total_delay)),
total_delay, carrier, flight, origin, dest, time_hour
),
10
)
## # A tibble: 10 x 6
##
total_delay carrier flight origin dest
time_hour
##
<dbl> <chr>
<int> <chr>
<chr> <dttm>
##
1
2573 HA
51 JFK
HNL
2013-01-09 09:00:00
##
2
2264 MQ
3535 JFK
CMH
2013-06-15 19:00:00
##
3
2235 MQ
3695 EWR
ORD
2013-01-10 16:00:00
##
4
2021 AA
177 JFK
SFO
2013-09-20 18:00:00
##
5
1994 MQ
3075 JFK
CVG
2013-07-22 16:00:00
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
##
6
1891 DL
2391 JFK
TPA
2013-04-10 19:00:00
##
7
1826 DL
2119 LGA
MSP
2013-03-17 08:00:00
##
8
1793 DL
2047 LGA
ATL
2013-07-22 07:00:00
##
9
1774 AA
172 EWR
MIA
2013-12-05 17:00:00
## 10
1753 MQ
3744 EWR
ORD
2013-05-03 20:00:00
#When we see the results, we realize that we do not need any
additional sorting function, hence there are no ties. Just in case we
get any ties, dplyr in R offers a few ranking functions like
dense_rank(), percent_rank(), etc. which can serve the purpose.
#5. What does 1:3 + 1:10 return? Why?
1
:
3
+
1
:
10
## Warning in 1:3 + 1:10: longer object length is not a multiple of
shorter object
## length
##
[1]
2
4
6
5
7
9
8 10 12 11
#Running the above code shows a warning that the longer vector is not
a multiple of the shorter vector. This warning throws an error in the
code. This is due to the larger vector's length being covered by the
shorter one. The vectors do not align correctly and we receive an
error since 10 does not divide by 3 precisely.
Sections: Grouped summaries with summarize(), Combining multiple operations
with the Pipe, Missing Values, Counts, Useful Summary Functions, Grouping by
Multiple Variables, Ungrouping
Exercises: 5, 6
#5. Which carrier has the worst delays? Challenge: can you disentangle
the effects of bad airports vs. bad carriers? Why/why not? (Hint:
think about flights %>% group_by(carrier, dest) %>% summarise(n()))
worst_delays
<-
flights
%>%
group_by
(carrier)
%>%
summarize
(
avg_arr_delay =
mean
(arr_delay,
na.rm =
TRUE
),
avg_dep_delay =
mean
(dep_delay,
na.rm =
TRUE
))
arrange
(worst_delays,
desc
(avg_arr_delay))
## # A tibble: 16 x 3
##
carrier avg_arr_delay avg_dep_delay
##
<chr>
<dbl>
<dbl>
##
1 F9
21.9
20.2
##
2 FL
20.1
18.7
##
3 EV
15.8
20.0
##
4 YV
15.6
19.0
##
5 OO
11.9
12.6
##
6 MQ
10.8
10.6
##
7 WN
9.65
17.7
##
8 B6
9.46
13.0
##
9 9E
7.38
16.7
## 10 UA
3.56
12.1
## 11 US
2.13
3.78
## 12 VX
1.76
12.9
## 13 DL
1.64
9.26
## 14 AA
0.364
8.59
## 15 HA
-6.92
4.90
## 16 AS
-9.93
5.80
arrange
(worst_delays,
desc
(avg_dep_delay))
## # A tibble: 16 x 3
##
carrier avg_arr_delay avg_dep_delay
##
<chr>
<dbl>
<dbl>
##
1 F9
21.9
20.2
##
2 EV
15.8
20.0
##
3 YV
15.6
19.0
##
4 FL
20.1
18.7
##
5 WN
9.65
17.7
##
6 9E
7.38
16.7
##
7 B6
9.46
13.0
##
8 VX
1.76
12.9
##
9 OO
11.9
12.6
## 10 UA
3.56
12.1
## 11 MQ
10.8
10.6
## 12 DL
1.64
9.26
## 13 AA
0.364
8.59
## 14 AS
-9.93
5.80
## 15 HA
-6.92
4.90
## 16 US
2.13
3.78
#Worst Departure delays:
flights
%>%
group_by
(origin)
%>%
summarize
(
avg_dep_delay =
mean
(dep_delay,
na.rm =
TRUE
))
## # A tibble: 3 x 2
##
origin avg_dep_delay
##
<chr>
<dbl>
## 1 EWR
15.1
## 2 JFK
12.1
## 3 LGA
10.3
#Worst Arrival delays:
flights
%>%
group_by
(origin)
%>%
summarize
(
avg_arr_delay =
mean
(arr_delay,
na.rm =
TRUE
))
## # A tibble: 3 x 2
##
origin avg_arr_delay
##
<chr>
<dbl>
## 1 EWR
9.11
## 2 JFK
5.55
## 3 LGA
5.78
#6. What does the sort argument to count() do. When might you use it?
#The `sort` argument to `count()` sorts by descending order of `n`.
The sort argument, when set to TRUE, sorts the output in descending
order. This can be useful when the most occurring group/entity is the
most important and needs to be on top of the list.
Sections: Grouped Mutates (and Filters)
Exercises: 2, 4, 7
#2. Which plane (tailnum) has the worst on-time record?
arrange
(
select
(
filter
(flights,
!
is.na
(arr_delay)), tailnum, arr_delay)
%>%
group_by
(tailnum)
%>%
summarise
(
sum
(arr_delay)),
desc
(
`
sum(arr_delay)
`
)
)
## # A tibble: 4,037 x 2
##
tailnum `sum(arr_delay)`
##
<chr>
<dbl>
##
1 N15910
7317
##
2 N15980
7134
##
3 N16919
6904
##
4 N228JB
6778
##
5 N14998
6087
##
6 N192JB
5810
##
7 N292JB
5804
##
8 N12921
5788
##
9 N13958
5620
## 10 N10575
5566
## # i 4,027 more rows
#tailnum N15910
#4. For each destination, compute the total minutes of delay. For each
flight, compute the proportion of the total delay for its destination.
flights
%>%
select
(dest, arr_delay)
%>%
group_by
(dest)
%>%
filter
(arr_delay
>
0
)
%>%
mutate
(
total_delay =
sum
(arr_delay,
na.rm =
TRUE
),
prop_delay =
arr_delay
/
total_delay)
## # A tibble: 133,004 x 4
## # Groups:
dest [103]
##
dest
arr_delay total_delay prop_delay
##
<chr>
<dbl>
<dbl>
<dbl>
##
1 IAH
11
99391
0.000111
##
2 IAH
20
99391
0.000201
##
3 MIA
33
140424
0.000235
##
4 ORD
12
283046
0.0000424
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
##
5 FLL
19
202605
0.0000938
##
6 ORD
8
283046
0.0000283
##
7 LAX
7
203226
0.0000344
##
8 DFW
31
110009
0.000282
##
9 ATL
12
300299
0.0000400
## 10 DTW
16
138258
0.000116
## # i 132,994 more rows
#7. Find all destinations that are flown by at least two carriers. Use
that information to rank the carriers.
flights
%>%
group_by
(dest)
%>%
filter
(
n_distinct
(carrier)
>=
2
)
%>%
group_by
(carrier)
%>%
summarise
(
number_of_transfers =
n_distinct
(dest))
%>%
arrange
(
desc
(number_of_transfers))
## # A tibble: 16 x 2
##
carrier number_of_transfers
##
<chr>
<int>
##
1 EV
51
##
2 9E
48
##
3 UA
42
##
4 DL
39
##
5 B6
35
##
6 AA
19
##
7 MQ
19
##
8 WN
10
##
9 OO
5
## 10 US
5
## 11 VX
4
## 12 YV
3
## 13 FL
2
## 14 AS
1
## 15 F9
1
## 16 HA
1
Related Questions
Suppose you wish to increase the maximum clock frequency of the following circuit (without introducing timing violations or
modifying the functional behavior of the circuit aside from introducing delay) through pipelining. Some potential locations for
pipelining to be added to wires (labelled with numbers 1-10) are shown below:
1
D Q
A DQ
D Q
10
B
D Q
DQ
C
CLK
Select all of the wires to which you would add pipeline registers. (Note, it is OK to increase the latency of the circuit, but not the
functionality: for any sequence of input combinations, it should produce the same output combinations)
If it is not possible, do not select any wires.
01
2
3
4
5
6
7
8
9
10
U
0
2
H
arrow_forward
Write VHDL code (Entity and Architecture) for the following circuit.
DO
D1
D2
D3
Nor1
Nor2
Nor3
Dout
arrow_forward
Please solve section a) step by step in detail and also please no ai or chat gpt answers they are wrong thank you.
arrow_forward
.
Two reduced SOP functions are given by a) F = WX + W’Y’
and b) G = WY + W’Z’+ XY’Z. For each function,(i)draw the Karnaugh map and (ii) show which (if any) product terms you would add to the
reduced function in order to avoid timing hazards.(iii) For a) only
draw the hazard-free circuit. You do not need to draw the circuit for b).
arrow_forward
don't use third party content 47. Explain the concept
of ladder filters.
arrow_forward
Please help me answer number 2. Please show a CLEAR and READABLE solution/s. Thanks!!! The course subject is Fundamentals of Electronic Communications.
NOTE: ANSWER LETTER D ONLY!!!
arrow_forward
Show how the following decoders can be formed using decoder expansion.complete the decoder diagrams.1. 5-to-32
2. 6-to-64
please complete both of them
don't use others answers
Thank yiu so much!! will leave you feedback!
arrow_forward
(B): Design a Moore FSM to detect the sequence (00) using T-FFs.
Q4/
(A): Design a Mealy FSM for odd parity generator using JK-FFs.
arrow_forward
Karnaugh Maps 155
5.21 Simplify the following expression first by using a niap and then by using Boolean
alecbra. Use the nap as a guide to determine which theorenis to apply to which
terms for the algebraic simplification.
F = a'b'c' + a'c'd + bcd + abc + ab'
5.22 Find all prime implicants and all mininum sum-of-products expressions for each of
the following functions.
(a) (A,B.C.D) = E m(4, 11, 12, 13, 14) + E d(5,6,7,8,9, 10)
(b) f(A,B,C,D) = L m(3, 11, 12, 13, 14) + E d(5,6,7,8,9. 10)
(c) f(A,B.C,D) = £ m(1, 2, 4, 13, 14) + £ d(5, 6, 7,8,9, 10)
(d) (A,B,C.D) = £ m(4, 15) + d(5,6, 7, 8,9, 10)
(e) f(A,B,C,D) = L m(3,4, 11, 15) + £ d(5,6,7,8,9, 10)
() f(A,B,C,D) = I m(4) +E d(5,6,7,8, 9, 10, 11, 12, 13, 14)
(g) fA,B,CD) = £ m(4, 15) + £ d(0, 1, 2,5, 6, 7, 8,9, 10)
5.23 For each function in Problem 5.22, find all minimum product-of-sums expressions.
5.24 Find the minimum sum-of-products expression for
(a) E m(0,2, 3,5,6, 7, 11, 12, 13)
( 6) Σm(2,4,8) +Σ d(0,3, 7)
( c ) Σm(1,5, 6,7, 13…
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Related Questions
- Suppose you wish to increase the maximum clock frequency of the following circuit (without introducing timing violations or modifying the functional behavior of the circuit aside from introducing delay) through pipelining. Some potential locations for pipelining to be added to wires (labelled with numbers 1-10) are shown below: 1 D Q A DQ D Q 10 B D Q DQ C CLK Select all of the wires to which you would add pipeline registers. (Note, it is OK to increase the latency of the circuit, but not the functionality: for any sequence of input combinations, it should produce the same output combinations) If it is not possible, do not select any wires. 01 2 3 4 5 6 7 8 9 10 U 0 2 Harrow_forwardWrite VHDL code (Entity and Architecture) for the following circuit. DO D1 D2 D3 Nor1 Nor2 Nor3 Doutarrow_forwardPlease solve section a) step by step in detail and also please no ai or chat gpt answers they are wrong thank you.arrow_forward
- . Two reduced SOP functions are given by a) F = WX + W’Y’ and b) G = WY + W’Z’+ XY’Z. For each function,(i)draw the Karnaugh map and (ii) show which (if any) product terms you would add to the reduced function in order to avoid timing hazards.(iii) For a) only draw the hazard-free circuit. You do not need to draw the circuit for b).arrow_forwarddon't use third party content 47. Explain the concept of ladder filters.arrow_forwardPlease help me answer number 2. Please show a CLEAR and READABLE solution/s. Thanks!!! The course subject is Fundamentals of Electronic Communications. NOTE: ANSWER LETTER D ONLY!!!arrow_forward
- Show how the following decoders can be formed using decoder expansion.complete the decoder diagrams.1. 5-to-32 2. 6-to-64 please complete both of them don't use others answers Thank yiu so much!! will leave you feedback!arrow_forward(B): Design a Moore FSM to detect the sequence (00) using T-FFs. Q4/ (A): Design a Mealy FSM for odd parity generator using JK-FFs.arrow_forwardKarnaugh Maps 155 5.21 Simplify the following expression first by using a niap and then by using Boolean alecbra. Use the nap as a guide to determine which theorenis to apply to which terms for the algebraic simplification. F = a'b'c' + a'c'd + bcd + abc + ab' 5.22 Find all prime implicants and all mininum sum-of-products expressions for each of the following functions. (a) (A,B.C.D) = E m(4, 11, 12, 13, 14) + E d(5,6,7,8,9, 10) (b) f(A,B,C,D) = L m(3, 11, 12, 13, 14) + E d(5,6,7,8,9. 10) (c) f(A,B.C,D) = £ m(1, 2, 4, 13, 14) + £ d(5, 6, 7,8,9, 10) (d) (A,B,C.D) = £ m(4, 15) + d(5,6, 7, 8,9, 10) (e) f(A,B,C,D) = L m(3,4, 11, 15) + £ d(5,6,7,8,9, 10) () f(A,B,C,D) = I m(4) +E d(5,6,7,8, 9, 10, 11, 12, 13, 14) (g) fA,B,CD) = £ m(4, 15) + £ d(0, 1, 2,5, 6, 7, 8,9, 10) 5.23 For each function in Problem 5.22, find all minimum product-of-sums expressions. 5.24 Find the minimum sum-of-products expression for (a) E m(0,2, 3,5,6, 7, 11, 12, 13) ( 6) Σm(2,4,8) +Σ d(0,3, 7) ( c ) Σm(1,5, 6,7, 13…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,