mid_Questions_Answers_word

.docx

School

Stevens Institute Of Technology *

*We aren’t endorsed by this school

Course

BIA672

Subject

Marketing

Date

Jan 9, 2024

Type

docx

Pages

8

Uploaded by DeanScience12746

1. An owner of a successful restaurant in Hoboken has decided to open a new restaurant in Washington DC. To find the best location of the new restaurant, the owner has combined the income demographics of Hoboken residents with the income demographics of all the zip codes in Washington in a SAS dataset (“income_byzip_DC_HB” ). To recommend the best zip codes to be considered perform the following analysis. a. Cluster the zip codes in the datasets into six zip codes using hierarchical clustering and average distance and recommend the appropriate zips codes. b. Cluster the zip codes in the datasets into six zip codes using Kmeans and recommend the appropriate zips codes. (20 points) Code: libname sasdata "O:\Marketing_analytics\SAS_data" access=read; run; proc copy in=sasdata out=work; select income_byzip_dc_hb; run; data DC other_states; set income_byzip_dc_hb; if STATEFIPS=11 then output DC; else output other_states; run; proc cluster data = DC outtree=DC_tree method=SINGLE ; var Returns_pct1 Returns_pct2 Returns_pct3 Returns_pct4 Returns_pct5 Returns_pct6; id zipcode; run; proc tree data =DC_tree noprint ncl=6 out=pout_hclust6; copy zipcode; run;
proc print data=pout_hclust6; run; ods rtf file="O:\Marketin_analytics\SAS_output\phclust6.rtf"; proc fastclus data =DC maxclusters =6 out=DC_clusters ; var Returns_pct1 Returns_pct2 Returns_pct3 Returns_pct4 Returns_pct5 Returns_pct6; id zipcode; run; ods rtf close; ods pdf file="O:\Marketin_analytics\SAS_output\phclust6.pdf"; ods pdf close; ods html path="O:\Marketin_analytics\SAS_output\" body="test.html"; ods html close; 2. A beef product retailer is looking to develop a price elasticity model for his product. The prices and sales quantities are stored in the “Beef_price_quantity” SAS dataset. Using regression, develop Price-Quantity and Log-Log models in SAS. Select the best model for the product. Explain your recommendation. (20 points) code: libname sasdata "O:\Marketing_analytics\SAS_data"; proc copy in=sasdata out=work; select beef_price_quantity; run;
data beef_price_quantity_b; set beef_price_quantity; Quantity_ln=log(Quantity); Price_ln=log(Price); run; proc sort data=beef_price_quantity_b; by Price_ln; ods rtf file="O:\BIA672\SAS_output\price.rtf"; run; proc sgplot data=beef_price_quantity_b ; series x=Price_ln y=Quantity_ln; run; proc reg data=beef_price_quantity_b ; model Quantity_ln=Price_ln; run; quit; proc sgplot data=beef_price_quantity_b; series x=Price y=Quantity; run; proc reg data=beef_price_quantity_b; model Quantity=Price; run; ods rtf close;
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help