ps2_answers

.py

School

Youngstown State University *

*We aren’t endorsed by this school

Course

CS7638

Subject

Mathematics

Date

Apr 3, 2024

Type

py

Pages

9

Uploaded by MinisterThunderRam25

Report
###################################################################### # This file copyright the Georgia Institute of Technology # # Permission is given to students to use or modify this file (only) # to work on their assignments. # # You may NOT publish this file or make it available to others not in # the course. # ###################################################################### ###################################################################### # How to use: # # For fill-in questions, change the value of each answer variable. # # For programming questions, change the implementation of the # function provided. # # Run the file from the command line to check: # # python ps2_answers.py # ###################################################################### # STUDENT ID # Please specify your GT login ID in the whoami variable (ex: jsmith123). whoami = '' n = float('nan') # Question 1: MEASUREMENT UPDATE # # How does the variance of the new Gaussian compare to the individual Guassians? # possible_answers = ( 'smaller', 'larger', 'the same' ) update = '' # Question 2: NEW VARIANCE # # What is the value for Nu squared as a multiple of Sigma squared? # Replace n with your answer # variance = n # Question 3: HEAVYTAIL GAUSSIAN # # Is it possible to represent this function as a Gaussian? # possible_answers = ( 'YES', 'NO' )
heavytail = '' # QUESTION 4: HOW MANY DIMENSIONS # # How many dimensions of the state vector for 2-dimensional space? # Replace n with your answer # dimensions = n # QUESTION 5: STATE TRANSITION MATRIX # # What is the new F matrix for a Kalman filter in 2 dimensions? # Replace the n's with your answers # F = ([[n, n, n, n], \ [n, n, n, n], \ [n, n, n, n], \ [n, n, n, n]]) # QUESTION 6: PROGRAMMING EXERCISE # Fill in the matrices P, F, H, R and I at the bottom # # This question requires NO CODING, just fill in the # matrices by replacing n with your values. # # Please do not delete or modify # any provided code OR comments. Good luck! # Matrices_P = ([[n, n, n, n], \ [n, n, n, n], \ [n, n, n, n], \ [n, n, n, n]]) Matrices_F = ([[n, n, n, n], \ [n, n, n, n], \ [n, n, n, n], \ [n, n, n, n]]) Matrices_H = ([[n, n, n, n], \ [n, n, n, n]]) Matrices_R = ([[n, n], \ [n, n]]) Matrices_I = ([[n, n, n, n], \ [n, n, n, n], \ [n, n, n, n], \ [n, n, n, n]]) ###################################################################### # Grading methods # # Do not modify code below this point. #
###################################################################### import hashlib import checkutil float_to_str = lambda x: "%.04f" % x do_nothing = lambda x: x FILL_IN_TEST_CASES = ( {'variable_name': 'update', 'str_func': do_nothing, 'answer_hash': '43dd639229e914a5327206408c1287c0', 'points_avail': 1 }, {'variable_name': 'variance', 'str_func': float_to_str, 'answer_hash': '2ea3bd7cc5760c8622dfc868bd505c4c', 'points_avail': 1 }, {'variable_name': 'heavytail', 'str_func': do_nothing, 'answer_hash': 'ef544ea31f6ea82b72384a7d9ef3dccf', 'points_avail': 1 }, {'variable_name': 'dimensions', 'str_func': float_to_str, 'answer_hash': 'efb95511d768395bb81769b61a33e0b8', 'points_avail': 1 }, {'variable_name': 'F', 'variable_idxs': (0,0), 'str_func': float_to_str, 'answer_hash': '7b681f62cc828c6d7568ef7f3a350428', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (0,1), 'str_func': float_to_str, 'answer_hash': 'ff917d13cdf6acdd0e17a176a570963e', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (0,2), 'str_func': float_to_str, 'answer_hash': 'd950e2cbd82caf777485907cf003584f', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (0,3), 'str_func': float_to_str, 'answer_hash': '02c733f0fdc78a155bafe8d953cb95d7', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (1,0), 'str_func': float_to_str, 'answer_hash': '9af9af4c7374f0b14fafa874d5bd003f', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (1,1), 'str_func': float_to_str, 'answer_hash': 'b3642522f0ba3e96b095f1b16f4c4eca', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (1,2), 'str_func': float_to_str, 'answer_hash': 'dd0580ff997a6c0ff5b0c5c026844ab0', 'points_avail': 1./16. },
{'variable_name': 'F', 'variable_idxs': (1,3), 'str_func': float_to_str, 'answer_hash': '044e197410340e5ff6f33350b73d1e89', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (2,0), 'str_func': float_to_str, 'answer_hash': 'c23fe4bb535bac9d90c828dc3717e93b', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (2,1), 'str_func': float_to_str, 'answer_hash': 'ac45c1a4dc7225534e911394e1370aea', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (2,2), 'str_func': float_to_str, 'answer_hash': '28d810834d62455e7520b5e6e2990437', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (2,3), 'str_func': float_to_str, 'answer_hash': '216542c4e092b5267c050babc85adf9d', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (3,0), 'str_func': float_to_str, 'answer_hash': '1b1241ecfc9d00dd5c3bcb35ea370abf', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (3,1), 'str_func': float_to_str, 'answer_hash': '34a21d761f1b187400b73aabeb42c5bc', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (3,2), 'str_func': float_to_str, 'answer_hash': 'b17f75679965dfecbb9f4d4f6b898309', 'points_avail': 1./16. }, {'variable_name': 'F', 'variable_idxs': (3,3), 'str_func': float_to_str, 'answer_hash': '3b2a80974732efdab96fbb189d681695', 'points_avail': 1./16. }, {'variable_name': 'Matrices_P', 'variable_idxs': (0,0), 'str_func': float_to_str, 'answer_hash': '3a7a6580a2f5bb09161b4057bf8c2ec1', 'points_avail': 1./16. }, {'variable_name': 'Matrices_P', 'variable_idxs': (0,1), 'str_func': float_to_str, 'answer_hash': '1ee7efb648f980167d5b426e506c5e5b', 'points_avail': 1./16. }, {'variable_name': 'Matrices_P', 'variable_idxs': (0,2), 'str_func': float_to_str, 'answer_hash': 'cf22d8b0a0d84c7e7b938207426c5e9c',
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help