1. Substances A and B have an appearance of a white solid like. Substances A and B were put into a test tube and on the Bunsen burner. As a result, B melted faster than A. A was slow to melt. The reason why B melted faster than A is because it has a lower boiling point than substance A which made it melt faster. It also shows that A needs more energy than B to be broken down. 2. Substance A and B were weighed; Substance A weighed 0.502 g and substance B weighed 0.503 g. Both substances were put into two different test tube with approximately 8 ml of DI water into the test tub. Substance A and B were stirred and B dissolved while A did not. This shows that B is soluble in water compared to A. Thus, shows that B is soluble in water than A. The reason why B is soluble in water is because it has a higher dipole moment than A. With a higher dipole moment, it shows that it is soluble in water since it is polar and the bonds were easily broken. 3. Maleic acid has a melting point of C and Fumaric acid has a melting point of C. The substance that has a higher melting …show more content…
Maleic acid and fumaric acid have different molecular structure. Maleic acid has a lower melting point than Fumaric acid which has a higher melting point. The reason why is because maleic acid has intramolecular forces, being a cis isomer, which causes it to have weak bonds. This causes it to be easily broken when energy is put in. On the other hand, fumaric acid has intermolecular forces, being a trans isomer, which has stronger bonds. This is harder for bonds to break because of how far apart the carboxylic acid groups are. In addition, maleic acid is more soluble than fumaric acid. Maleic acid has hydrogen bonding due to its intermolecular forces. This causes it to be attracted to water and dissolve. While fumaric acid does not have any hydrogen bonding because of its intramolecular forces which makes it harder for fumaric acid to dissolve in water because it fumaric acid is not attracted to
3.6.1. BAP (Benzyl amino purine) stock solution (2mg/ml): 20mg of BAP being weighed and dissolved completely in 1N NaOH to a final total volume of 10 ml with autoclaved double distilled water to obtain a stock concentration of 2mg/ml was prepared and stored in clean autoclaved vials at -4°C.
pH was recorded every time 1.00 mL of NaOH was added to beaker. When the amount of NaOH added to the beaker was about 5.00 mL away from the expected end point, NaOH was added very slowly. Approximately 0.20 mL of NaOH was added until the pH made a jump. The pH was recorded until it reached ~12. This was repeated two more times. The pKa of each trial are determined using the graphs made on excel.
Melting Point Data Table Compound Aspirin Caffeine Salicylamide Actual MP (ºC) 93 - 98 260 - 262 96 - 102 Expected MP (ºC) 135 236 140 Percent Error (%) ~30% ~12% ~30%
Other substances that dissolve in water also lower the freezing point of the solution. The amount by which the freezing point is lowered depends only on the number of molecules dissolved, not on their chemical nature. This is an example of a colligative property. In this project, you'll investigate different substances to see how they affect the rate at which ice cubes melt. You'll test substances that dissolve in water (i.e., soluble substances), like salt and sugar, as well as substances that don't dissolve in water (i.e., insoluble substances), like sand and pepper. Which substances will speed up the melting of the ice?
I will be doing this experiment to understand density of water compared to the volume of an object. D=m/v=mass/volume
Discussion: As seen in the melting point determination, the average melting point range of the product was 172.2-185.3ºC. The melting points of the possible products are listed as 101ºC for o-methoxybenzoic acid, 110ºC for m- methoxybenzoic acid, and 185ºC for p- methoxybenzoic acid. As the melting point of the sample
6-3: This process is used by cells to manufacture _biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products__
The purpose of this lab is to study some of the physical properties of two types of solids – ionic and molecular. The samples used are sodium chloride (ionic) and camphor (molecular). The physical properties studied are odour, hardness, melting point, solubility in water and solubility in 2-propanol. It is observed that some of the physical properties of sodium chloride are no odours, hard, a high melting point, soluble in water and insoluble in 2-propanol; some of the physical properties of camphor are a strong odour, soft, a low melting point, insoluble in water and soluble in 2-propanol. A few conclusions can be drawn from these
The main objective of this experiment is to differentiate between a physical change and a chemical change.
Solubility – Very soluble (water), Freely soluble (methylene chloride, chloroform, alcohol), Slightly soluble (acetone) and Insoluble (ether).6 Melting point - 120°C or 248°F.5
Calcium carbonate also known as limestone has a very high melting point of 1339˚C and boiling point due to strong
Macromolecules have a large covalent structures which contain non-metal atoms, they are joined to contiguous atoms by covalent bonds. Substances that have giant covalent structures have high melting points due to a lot of strong covalent bonds that must be broken.
The overall purpose of this lab was to see how bonding effects chemical and physical properties. The lab consisted of 6 compounds Dodecanoic Acid, Sodium Chloride, Duodecose, Octadecanoic Acid, Potassium Bromide and Amylose. Using these compounds, tests were conducted on their appearance, solubility in distilled water, conductivity and melting point. There are 3 groups these compounds can be organized into. One group is Dodecanoic Acid and Stearic Acid. Another group is Duodecose and Amylose and the last group is Sodium Chloride and Potassium Bromide. These compounds are put into these groups because of their similar structures and properties.
The objectives of this lab are, as follows; to understand what occurs at the molecular level when a substance melts; to understand the primary purpose of melting point data; to demonstrate the technique for obtaining the melting point of an organic substance; and to explain the effect of impurities on the melting point of a substance. Through the experimentation of three substances, tetracosane, 1-tetradecanol and a mixture of the two, observations can be made in reference to melting point concerning polarity, molecular weight and purity of the substance. When comparing the two substances, it is evident that heavy molecule weight of tetracosane allowed
Samples of benzophenone, malonic acid, and biphenyl were each tested with water, methyl alcohol, and hexane. Benzophenone was insoluble in water as it is nonpolar while water is highly polar. Benzophenone was soluble in methyl alcohol, dissolving in 15 seconds, because methyl alcohol is intermediately polar as benzophenone is nonpolar. Methyl alcohol is polar but not as much as water. Thus, the nonpolar benzophenone was soluble in methyl alcohol. Benzophenone was partially soluble in hexane because hexane is nonpolar as is benzophenone. Thus, benzophenone was dissolved in hexane. Malonic acid was soluble in water because both malonic acid and water are polar. It took 25 seconds for malonic acid to dissolve in water. Malonic acid was soluble in methyl alcohol because malonic acid is polar and methyl alcohol is intermediately polar, allowing malonic acid to dissolve in the methanol in 15 seconds. Malonic acid was insoluble in hexane because hexane is nonpolar while malonic acid is polar. Biphenyl was insoluble in water as water is highly polar whilst biphenyl is nonpolar. Biphenyl was partially soluble in methanol which is intermediately polar whilst biphenyl is nonpolar, allowing it to dissolve a little. Biphenyl was soluble in hexane because both biphenyl and hexane are nonpolar molecules. Biphenyl dissolved in hexane in 10 seconds.