Experiment 55 consists of devising a separation and purification scheme for a three component mixture. The overall objective is to isolate in pure form two of the three compounds. This was done using extraction, solubility, crystallization and vacuum filtration. The experiment was carried out two times, both of which were successful.
The purpose of this lab was to identify unknown substances using density. We had three unknown substances; a yellow liquid and two metal rods. For each substance we measured volume using the water displacement method in a graduated cylinder and mass using a triple beam balance. Then we calculated density using the formula density (g/cm3)= mass (g)/volume (cm3). The data we collected in the lab is in the table below. After comparing our data with the density chart we were able to determine the identities of the substances. The liquid was cooking oil and the rods 1 and 2 were copper and aluminium, respectively. In conclusion, density - a characteristic property- is important because even though many substances may look the same but have different
Procedure- The procedure for this lab includes many simple steps and a few different things we are testing. Our first Procedure was to combine water and salt to see what kind of reaction it would make. First we fill the graduated cylinder with 100 ml of water. We then measured 1.0 grams of table salt on a balance to get an accurate amount. After, we took the measured amount of salt and poured it into the water filled beaker. Lastly, we watched and recorded the reaction.
Abstract: One mixture of two unknown liquid compounds and one mixture of two unknown solid compounds were separated, isolated, purified, and characterized by boiling point. Two liquid unknowns were separated, isolated, and purified via simple distillation. Then, the process of an acid-base extraction and washing were used to separate two unknown compounds into two crude compounds: an organic acid and a neutral organic compound. Each crude compound was purified by recrystallization, resulting in a carboxylic acid (RCO2H) and a pure organic compound (RZ). The resulting mass of the pure carboxylic acid was 1.688g with a percent recovery of 31.80%, the boiling range was 244-245 °C, and its density was 2.0879g/mL. The resulting mass of the pure organic solid was 2.4902g with a percent recovery of 46.91%, the boiling range was 52.0-53.4°C, and its density was 1.5956 g/mL.
The objective of this extraction experiment was to achieve a comprehensive understanding, as well as master the practice, of the technique of separating various individual components of a compound.
In this Chemistry Lab the main objective is to perform accurate chemical analysis for the quantity of elements and compounds in a sample. There will be a compound made then synthesized. The methods used were acid-base titrations, redox titrations, gravity filtration, and distillation. General conclusions included
Day 1. Michael was coming home for vacation from college. When he got home he found out that
Substances A and B have an appearance of a white solid like. Substances A and B were put into a test tube and on the Bunsen burner. As a result, B melted faster than A. A was slow to melt. The reason why B melted faster than A is because it has a lower boiling point than substance A which made it melt faster. It also shows that A needs more energy than B to be broken down.
6-3: This process is used by cells to manufacture _biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products__
The first TLC plate showed that the fractions collected during the experiment that appeared to be the purest were fractions 4 and 6. These two fractions and fractions number 5 were combined for the final product. The Rf values for the standard carvone, fraction 4, and fraction 6 were all 0.32 indicating that these compounds were
In experiment 3.11, we found out whether or not a larger amount of a liquid would get hotter when it boils. To answer this, we heated a specific amount of unknown liquid and recorded the temperature every fifteen seconds. In our scatter plot, we were able to find the boiling point of our liquid. We know that the slope of our graphs is when the liquid molecules were moving around and heating up. The plateau of our graph points is where the liquid started to evaporate and boil. This is were we found our boiling point at. Shantel and I decided that our boiling point was about 98º Celsius. If you had another slope in your graph, that was when you were simply heating the leftover gas. The histogram showed us that there were about equal amounts of data in the higher temperature (about 95º Celsius) bins for both 20mL of liquid and 10mL of liquid. Also, in the lower temperature bins (75º to 80º Celsius) there was about equal amount of data for 20mL of liquid and 10mL of liquid. There was 7 pieces of data for 10mL of liquid in the lower bins, and 6 pieces of data for 20mL of liquid. If a larger amount of liquid did have a higher boiling point, the clusters would be organized by volumes or amount. For example, all of the 20mL pieces of data would be in the higher temperature bins, and all of the 10mL pieces of data would be in the lower temperature bins or flipped. Rather, the bins were clustered by identity. The boiling point is a characteristic property.
The original 1.0 gram of the 50/50 mixture of the benzoic acid and benzil contain 0.5 gram of benzil. Thus, from 0.5 gram of benzil, only 0.266 gram of benzil was collected. The percent recovery of benzil was calculated to be 53.2%. This low percent recovery could be due to filtration errors. Some amount of benzil remained on the filtration paper that contained the MgSO4. In order for determining the purity of the
Dilute 2.7 mL 37% aqueous formalin solution to 1 L with distilled, deionized water. This solution is stable for at least three months. Standardize by placing 5.0 mL of freshly prepared 1.13 M sodium sulfite solution in a 50-mL beaker and stir magnetically. Adjust pH to between 8.5 and 10 with base or acid. Record the pH. Add 10.0 mL formaldehyde stock solution. The pH should now be greater than11. Titrate the solution back to its original pH with 0.02 N sulfuric acid (1 mL acid = 0.600 mg HCHO; about 17 mL acid needed). If the endpoint pH is overrun, back-titrate to the endpoint with 0.01N sodium hydroxide. Calculate the concentration, C s (mg/mL), of the formaldehyde stock solution:
Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Describe what you see at the grating surface.
Part 2 to determine the empirical formula and percentage yield of the compound synthesized in Part 1. Spectrophotometry is a routine laboratory test that has the added advantage