Abstract Some bacteria are able to go through transformation making new combinations of genes. Transformation is a way of gene variability in bacteria. This experiment is based on the transformation mechanism of bacteria and gene regulation. The bacteria used for the experiment was Escherichia coli and the genes introduces for the transformation were: gfp and bla by a pGLO™ plasmid. After the insertion of the target genes and growing the bacteria on specialized LB media, it could be seen that the transformants were positive for the gene expression. The transformed E. coli on the media appeared fluorescent green under UV light.
Introduction The bacteria used in this experiment is Escherichia coli which is not naturally competent. E.
…show more content…
coli. Right after it the tubes were shook for ten minutes in a 37º C shaker. There were gather 4 petri plates, one with LB media, two with LB amp(ampicillin), and the last one with LB amp ara(arabinose sugar). After the 10 minutes each plate was given an aliquot of 100 microliters with one of the E. coli of the eppie tubes. The LB plate and LB amp had the pGLO- and the other two plates, LB amp ara and LB amp, had the pGLO+. After this step it’s done the plates are prepared to be incubated at 37º C for two days and reveal the results of the induced transformation.
LAB 9: TRANSFORMATION PROCEDURE
Results The results for this experiment were a bit ambiguous but still recognizable and pretty clear. All of these plates were seen under UV light. In the LB plate pGLO- , after the incubation, there was found a lawn of Escherichia coli colonies that looked green because of the light. The LB amp plate with the pGLO- bacteria, the E. coli did not seem like it grow on it, the media just looked green. A count of 172 colonies that looked green, was found in the LB amp pGLO+ plate, this plate had ampicillin. In the LB ara amp media plate there were found 251 colonies of E. coli. In this plate the colonies looked fluorescent green under the UV light, the only plate. In a scale of growth from larger to smaller, the first in line would be the LB, then LB ara amp, proceeds LB amp (pGLO+), and last one LB amp
The purpose of the PGLO lab was to be able to perform a procedure known as a genetic transformation. We used a procedure to transform bacteria with the gene that codes for a Green Fluorescent Protein (GFP). The actual source of the GFP gene that we used in this complicated experiment is the bioluminescent jellyfish Aequorea victoria. This protein causes the jellyfish to glow under a UV light that was provided in the dark. After the transformation procedure, the bacteria showed their newly acquired gene from a jellyfish and produced the fluorescent protein, which as a result, causes it to glow. If the bacteria glowed in the dark, that was the initial sign that the experiment was successful.
The instructor split the class into two separate groups one with the plasmid lux and the other with the plasmid pUC18. Group two was assigned to test the lux plasmid. The, Eppendorf, tubes were labeled “C” for the control plasmid DNA and “lux” for the plasmid lux DNA. The two tubes were then placed into the ice bath. Using a sterile micropipette 5 uL of the lux plasmid was added to the tubes labeled “lux” or 5 uL of the control plasmid was added to the tubes labeled “C” for the control plasmid DNA. Eppendorf tubes had 70 uL of the competent cells added to them with a different transfer pipet. All the tubes were then stored in the ice bath for about fifteen minutes. Another test tube was labeled “NP”, which stands for “No Plasmid”, and 35 uL of competent cells was added to each of the test tubes labeled “NP” during the fifteen minutes. Once the fifteen minutes are up, all three tubes were placed into a preheated water bath at 37 °C for about five minutes. To both the lux
70µL of competent E.coli are added to both test tubes; pUC18 and Lux (Alberte et al., 2012). Both test tubes are then tapped and placed back into the ice bath for 15 minutes. While waiting, another test tube is obtained, filled with 35µL of competent cells and labeled NP for no plasmid. A water bath is preheated to 37 degrees Celsius and all three labeled test tubes are inserted into the bath for five minutes (Alberte et al., 2012). Using a sterile pipet 300µL of nutrient broth are inserted into both the control and Lux test tubes and 150µL are inserted to the no plasmid test tube to increase bacterial growth. All three test tubes are then incubated at 37 degrees for 45 minutes. Six agar plates are obtained and labeled to correspond each test tube, three of the plates contain ampicillin. A pipet is used to remove 130µl from each test tube containing a plasmid and insert it into the corresponding agar plate. For this, a cell spreader is first
The plasmid pGLO contains an antibiotic-resistance gene, ampR, and the GFP gene is regulated by the control region of the ara operon. Ampicillin is an antibiotic that kills E. coli, so if E. coli, so if E. coli cells contain the ampicillin-resistance gene, the cells can survive exposure to ampicillin since the ampicillin-resistance gene encodes an enzyme that inactivates the antibiotic. Thus, transformed E. coli cells containing ampicillin-resistance plasmids can easily be selected simply growing the bacteria in the presence of ampicillin-only the transformed cells survive. The ara control region regulates GFP expression by the addition of arabinose, so the GFP gene can be turned on and
In the LB (pGLO negative), it is expected to not see any colonies growing. As a result of this experiment, it shown any growth colonies but this only had shown a large number of white, circular colonies that were found across the surface of the agar. In the LB/Amp (pGLO negative), it is expected to see any growth colonies. In the experiment, the resulted was no growth colonies because this has Ampicillin and no pGLO. Now, the LB/Amp (pGLO positive), it is expected to have growth colonies in the agar plate. As a result, it was shown growth colonies in the agar plate because has positive pGLO regardless having Ampicillin. In the other hand, both positive pGLO have the same components but in one plate was added Arabinose. The LB/Amp/Ara (pGLO
The purpose of this experiment is to make E.Coli competent so that it can be transformed in order to become immune to ampicillin, then we would be able to determine the transformation efficiency of the culture. We determine this by preparing 4 plates of E.coli, each labeled “LB-plasmid”, “LB+plasmid”, “LB?Amp-plasmid”, and “LB/Amp+plasmid”. This meant that either should have lacked plasmid and Ampicillin, with plasmid but lacked Ampicillin, without plasmid but with Ampicillin, or were with Ampicillin and plasmid, respectively. Then we made the bacterial cells competent by adding CaCl2 to 2 vials of the colony (one with plasmids), and incubating on ice, then heat shocking, and returning to ice. Luria Broth is then added and left to sit for 5-15
This pBlu lab had for purpose to present the changes of the strain of E. coli bacteria due to new genetic information being introduced into the cell. In this experiment we are freezing and heat shocking the E. Coli bacteria that is then forced to take the plasmid DNA. The E. coli then transforms the pBLu plasmid, which carries the genes coding for two identifiable phenotypes. After following the Carolina Biological steps our lab worked well and we able to see some colonies of bacteria on the plates. The x-gal plate showed a significant amount of bacteria to confirm that the pBlu plasmid took over the E. coli strain.
Purpose The purpose of this experiment is to demonstrate how genetic engineering works to manipulate the genetics to express certain traits. This can be seen with the insertion of the pGLO plasmid onto Escherichia coli. Introduction All of the things that is required to make a particular organism function properly, is called the genome. Eukaryotes have a genome that is composed of chromosomes, plasmids, and other specific organelles, such as mitochondria, chloroplasts, etc.
Next the tubes were placed in an ice bath, while obtaining a sterile loop to swipe a single colony of E.coli to put into the tube. After gently swiping a colony onto the loop, it was then spun in the +pGLO tube to get it to come off, returned to the ice bath. Next using a different sterile loop, it was swooped it in a container labeled pGLO plasmid DNA and again spun it ONLY into the tube with the solution labeled +pGLO to get it to come off. After about 10 minutes on ice the tubes were then placed into a 42ºC water bath for 50 seconds exactly, and immediately after placed them back into the ice bath. Finally, after 2 more minutes in the ice bath the tubes were separated into 4 containers. 250 ul of +pGLO solution was added to the containers containing +pGLO, LB broth, with ampicillin and +pGLO, LB broth, ampicillin, with arabinose. Also 250 ul of the –pGLO solution was added to the 2 containers containing LB broth, and ampicillin, with LB broth. Using a sterile loop for each plate the solutions were spread out gently and thoroughly on to the containers with agar. After the containers were incubated in 37ºC for at least 24 hours, the results were observed and disposed of (Weedman,
Genetic transformation occurs when genes are inserted into another gene to change the organism’s trait (Weedman2016). In this experiment, we proceeded to transform the E. coli bacteria with a gene that contained green fluorescent protein. The green fluorescent protein is used in experiments because it beams a green color under a UV light (Chalfie2008). Typically, it is used to mark the expression of genes, which is why it serves as the symbol for all gene expressions (Tsien1998). In the experiment, we will be using pGLO as the organisms that will transmit the disease, otherwise known as a vector. The pGLO in the experiment
In the following experiment, Escherichia coli were transformed using six separate agar plates. Transformation occurs when plasmid DNA is uptake into the bacterial cell. The two ways transformation is facilitated is by placing them in calcium chloride (CaCl2) and heat shock. These two methods allowed the bacterial cells to become competent or more open to the uptake of plasmid DNA. The purpose of this experiment was to transform bacterial cells with plasmid containing ampicillin resistance and lux genes. It was hypothesized that the lux genes would have created a light-emitting reaction on the bacteria while the ampicillin genes should have made the bacteria resistant to ampicillin attacks and be able to grow normally. The experiment results
Figure 3 shows the growth of three differently treated E. Coli plates. -pGLO plates are both controls. -pGLO with only LB experienced the most grow because
The purpose of this lab was to introduce bacterial growth undergoing transformation and to understand the process of transformation.
Bacterial transformation is the process of moving genes from a living thing to another with the help of a plasmid.The plasmid is able to help replicate the chromosomes by themselves; laboratories use these to aid in gene multiplication. Bacterial transformation is relevant in everyday lives due to the fact that almost all plasmids carry a bacterial origin of replication and an antibiotic resistance gene(“Addgene: Protocol - How to Do a Bacterial
pGLO is a plasmid that contains several genes, araC, gfp,bla, and an ori of replication. E. coli was artificially induced that became a competent bacteria when it took the pGLO DNA, so it had the ability to have ampicillin resistance and fluoresced when arabinose was present. Two tubes with E. coli were labeled to differentiate which tube the pGLO was added to, then through several steps the bacteria was induced to intake the pGLO DNA. At the end, each tube was inoculated on to three different plates that contained different substances and they were incubated then observed. The results showed only one E. coli culture had growth and fluoresced which was the pGLO+ E. coli that was grown on the plate with LB, amp +arab, there were only two E. coli cultures that did not grow because the pGLO- E. coli did not have the ampicillin resistance to grow in ampicillin conditions, and the rest of the culture plates showed growth. pGLO could be used in food safety experiments done by the food safety department that helped to identify Salmonella and Yersinia enterocolitica in pig slurry, so they were able to calculate how long these bacteria lived in certain conditions before disinfectants were used.