Within the experiment, pure catechol was mixed with different concentrations of catechol oxidase and the rate at which each solution produced benzoquinone was measured. The amount of benzoquinone made throughout the trials was measured by using a colorimeter to measure the level of “brownness” of the liquid. The colorimeter worked by shining a light through the liquid and then measuring that light on the other side to see how much of it was absorbed. In this experiment, absorbance of blue light was measured because blue light is absorbed by the color brown. The amount of blue light absorbance was measured every 15 seconds for five minutes. Because enzymes speed up reactions, more enzymes would cause the reaction to be even faster.1
The use of multiple test tubes and Parafilm was used for each experiment. Catechol, potato juice, pH 7 phosphate buffer, and stock potato extract 1:1 will be used to conduct the following experiments: temperature effect on enzyme activity, the effect of pH on enzyme action, the effect of enzyme concentration, and the effect of substrate concentration on enzyme activity. For the temperature effect on enzyme activity, three test tube were filled with three ml of pH 7 phosphate buffer and each test tube was labels 1.5 degrees Celsius, 20 °C, and 60 °C. The first test tube was placed in an ice-water bath, the second test tube was left at room temperature, and the third test tube was placed in approximately 60°C of warm water. After filling the test tubes with three ml of the
The aim of my investigation is to see how pH affects the activity of potato tissue catalase, during the decomposition of hydrogen peroxide to produce water and oxygen.
We used a spectrophotometer to measure how much blue light energy is absorbed by benzoquinone. As the product solution gets browner that means the more benzoquinone was produced. We used the change in absorbance over a period of time was used to calculate the average reaction rate of catechol oxidase when exposed to different temperatures and pHs. We hypothesized that the benzoquinone absorbance rate would be faster when the pH added to the cuvettes were greater than the pH of the potato tissue. Our second hypothesis states that we believe that enzymatic reaction rates would have the slowest reaction at 80 degrees Celsius, slightly faster at 4 degrees Celsius, moderate at 37 degrees Celsius, and the fastest at 25 degrees Celsius. We based our hypothesis on the fact that potatoes grow in temperatures around 25 degrees Celsius better than any other temperatures. Therefore, we think that catechol oxidase activity would be higher when the temperature is around 25
Catechol, in the presence of oxygen is oxidized by catechol oxidase to form benzoquinone (Harel et al., 1964). Bananas and potatoes contain catechol oxidase that acts on catechol which is initially colorless and converts it to brown (Harel et al., 1964). In this experiment, the effect of pH on the activity of catechol oxidase was conducted using buffers ranging from pH2 to pH10. Two trials were conducted due to the first trial results being altered by an external factor. The results were acquired by taking readings every 2 minutes for 20 minutes from a spectrophotometer and then recorded on to the table. The data collected in the table were then made into graphs to illustrate the influence of pH on the catechol oxidase catalyzed reaction. After analysis, the data revealed that pH did have a significant influence on the enzyme as recorded by absorbance per minute. However, the data was collected was not accurate due to external factors, thus the results are debatable and should be experimented again for validation.
The role of an enzyme is to catalyse reactions within a cell. The enzyme present in a potato (Solanum Tuberosum) is catechol oxidase. In this experiment, the enzyme activity was tested under different temperature and pH conditions. The objective of this experiment was to determine the ideal conditions under which catechol oxidase catalyses reactions. In order to do this, catechol was catalyzed by catechol oxidase into benzoquinone at diverse temperatures and pH values. The enzyme was exposed to its new environment for 5 minutes before the absorbance of the catechol oxidase was measured at 420 nm using a spectrophotometer. The use of a spectrophotometer was crucial for the collection of data in this experiment. When exposed to hot and cold temperatures, some enzymes were found to denature causing the activity to decrease. Similarly, when the pH was too high or low, then the catechol oxidase enzyme experienced a significant decrease in activity. It can be concluded after completing this experiment that the optimal pH for catechol oxidase is 7 and that the prime temperature is 20º C. Due to the fact that the catechol oxidase was only tested under several different temperatures and pH values, it is always possible to get a more precise result by decreasing the increments between the test values. However, our experiment was able to produce accurate results as to the
This lab was performed in order to discover the activity of the enzyme catecholase in different pH levels as well as its absorbance in differently concentrated solutions. A spetrophotometer was used to measure the absorbance of the enzyme catecholase in different pH solutions as well as to measure the absorbance of catecholase in solutions with different concentrations of potato juice and phosphate buffers. Absorbance of the enzyme catecholase was at an optimum level when pH was close to neutral. When pH was acidic or basic, the catecholase was less effective. Also, when there was a higher concentration of potato juice and a lower concentration of phosphate buffer, absorbance of the enzyme increased.
However one beaker received 100 mL of Deionized water with a molarity of 0.0. Afterwards a cork borer was pushed through the potato and was twisted back and forth. Once the borer was filled it was removed from the potato. Pushing the potato cylinder out of the borer, this this step was repeated six more times in order to get seven undamaged potato cylinders. Using a sharp razor blade, the potato cylinders were both cut to a uniform length of about 5cm, and were removed of their potato skins. The potato pieces were also cut in half to give the cells a greater surface area in which it was easier to absorb the solution. After the cylinders were weighed on a balance and the data was recorded in Table 4. Using the razor blade each potato was cut lengthwise into two long halves. Then the potato pieces were transferred to the water beaker and the time they were submerged was recorded. This step was repeated for all potato cylinders in which the pieces were placed in solutions 0.1 to 0.6 M. The potatoes were incubated for ninety minutes. At the end of the incubation period the time was recorded. Then the potato piece was removed form the first sample. Next potato pieces were weighed the and the final weight was recorded in Table 4. This procedure was repeated until all samples had been weighed and recorded in the chronological order they were initially placed in the test solution. Afterwards the table was completed by recording the
The experiments involved PH buffers of different pH were added to potato juice, water, and the enzyme catecholase. The mixture was then subjected to spectrophotometer at a wavelength of 420nm taking the absorbance readings. In the second experiment, a phosphate buffer of PH 7.0 was used in different measures together with different measurement of potato juice and the enzyme catecholase then subjected to the spectrophotometer at a wavelength of 420nm. The data collected inform of table and analyzed using descriptive statistics such as line graph and later interpreted, showing that PH and enzyme concentration do affect the rate of enzyme reaction
Lab six requires students to observe the effects of pH and enzyme concentration on catecholase activity. Enzymes are organic catalysts that can affect the rate of a chemical reaction depending on the pH level and the concentration of the enzyme. As pH comes closer to a neutral pH the enzyme is at its greatest effectiveness. Also at the absorbance of a slope of 0.0122 the enzyme is affected greatly. The pH effect on enzymes can be tested by trying each pH level with a pH buffer of the same pH as labeled as the test tube and 1mL of potato juice, water, and catechol. This is all mixed together and put in the spectrophotometer to test how much is being absorbed at 420nm. As the effect on enzyme concentration can be tested almost the same way. This part of the exercise uses different amounts of pH 7-phosphate buffer and potato juice, and 1mL of catechol mixed together in a test tube. Each substance is put in the spectrophotometer at a wavelength set tot 420nm. The results are put down for every minute up to six minutes to see how enzyme concentration affects reaction rate. The results show that the pH 8 (0.494) affects the enzyme more than a pH of 4 (0.249), 6 (0.371), 7 (0.456), and 10 (0.126). Also the absorbance is greatest at a slope of 0.0122 with test tube C that has more effect on the reaction rate, than test tube A, B, and D.
In order to isolate benzoic acid, benzocaine and 9-fluorenone, each component needed to be separated from one another. All three compounds began together in one culture tube, dissolved in methylene chloride and formed into a homogenous mixture. In this culture tube, two milliliters of aqueous three molar hydrochloric acid was added, which immediately formed two layers, the top acidic aqueous layer was clear in color and contained benzocaine, and the bottom organic formed was yellow and contained benzoic acid and 9-fluorenone. Benzocaine’s amino group is protonated by the aqueous layer hydronium. This protonation forms the conjugate acid of benzocaine, benzocaine hydrochloride. Thus, the conjugate acid, benzocaine hydrochloride is a salt in which is soluble in water and furthermore can be isolated from the organic mixture. When testing out the pH levels in benzocaine, the pH test strip was dark blue in color, indicating a pH level of around 5 to 7. When isolating benzoic acid, two milliliters of aqueous three molar sodium hydroxide was added, which deprotonates the carboxylic group in benzoic acid, forming its conjugate base, sodium benzoate. As with benzocaine hydrochloride, sodium benzoate is a water soluble ionic salt in the aqueous layer that can then be separated from the bottom organic layer containing the 9-fluorenone. The pH test strip was a vibrant red for benzoic acid, indicating a pH of 2. Now the 9-fluorenone is left, deionized water is added to remove any excess
And finally into test tube 3, I pipetted 1.0 ml turnip extract and 4.0 ml of water. The contents of test tube 1 was poured into a spectrometer tube and labeled it “B” for blank. “B” tube was now inserted it into the spectrometer. An adjustment to the control knob was made to zero the absorbance reading on the spectrometer since one cannot continue the experiment if the spectrometer is not zeroed. A combination of two people and a stop watch was now needed to not only record the time of the reaction, but to mix the reagents in a precise and accurate manner. As my partner recorded the time, I quickly poured tube 3 into tube 2. I then poured tube 2 into the experiment spectrometer tube labeled “E” and inserted it into the spectrometer. A partner then recorded the absorbance reading for every 20 seconds for a total of 120 seconds. After the experiment, a brown color in the tube should be observed to indicate the reaction was carried out. Using sterile techniques, any excess liquid left was disposed
Samples of benzophenone, malonic acid, and biphenyl were each tested with water, methyl alcohol, and hexane. Benzophenone was insoluble in water as it is nonpolar while water is highly polar. Benzophenone was soluble in methyl alcohol, dissolving in 15 seconds, because methyl alcohol is intermediately polar as benzophenone is nonpolar. Methyl alcohol is polar but not as much as water. Thus, the nonpolar benzophenone was soluble in methyl alcohol. Benzophenone was partially soluble in hexane because hexane is nonpolar as is benzophenone. Thus, benzophenone was dissolved in hexane. Malonic acid was soluble in water because both malonic acid and water are polar. It took 25 seconds for malonic acid to dissolve in water. Malonic acid was soluble in methyl alcohol because malonic acid is polar and methyl alcohol is intermediately polar, allowing malonic acid to dissolve in the methanol in 15 seconds. Malonic acid was insoluble in hexane because hexane is nonpolar while malonic acid is polar. Biphenyl was insoluble in water as water is highly polar whilst biphenyl is nonpolar. Biphenyl was partially soluble in methanol which is intermediately polar whilst biphenyl is nonpolar, allowing it to dissolve a little. Biphenyl was soluble in hexane because both biphenyl and hexane are nonpolar molecules. Biphenyl dissolved in hexane in 10 seconds.
In the exercise # 2 we observed the effect of substrate concentration, enzyme concentration, pH and temperature on enzyme activity. All the data showed that once potato extract was added to catechol and water the reaction varied dependent on the level of catechol. As in
The purpose of this experiment is to practice common organic laboratory techniques inside the lab to get one oriented to the basic methods of procedure that can be used for later experiments. This experiment involves the separation of benzoic acid from a more crude form, consisting of benzoic acid, methyl orange, a common acid/base indicator, and cellulose, a natural polymer of glucose (Huston, and Liu 17-24). The technique that is used to perform this separation is called extraction. Extraction is a systematic process of separating mixtures of compounds, taking advantage of the affinity differences of compounds to separate them (Padias 128-37). This technique recognizes the principle that “like dissolves in like,” that is,