Cannizzaro Reaction History: Stanislao Cannizzaro was an Italian chemist. He made his first contribution to chemical research in 1851 when he, along with F.S. Cloez, a French chemist, prepared cyanimide using ammonia and cyanogen chloride in an ethereal solution. Later that year, he became a professor in physical chemistry in Alessandria. It is there where Cannizzaro discovered that aromatic aldehydes can be decomposed into a mixture of the corresponding acid and alcohol by using an alcoholic solution of potassium hydroxide. This is now known as the Cannizzaro Reaction. In 1860, Cannizzaro also contributed much on how to define molecule and atom in his course outline given out at the first international chemical congress. Purpose: …show more content…
The 4-nitrobenzoic acid product had a percent yield of 48.89%, showing a very high yield out of 50%. The melting point range was from 236-238°C, whereas the literature value is 237-240°C. The melting point of the product was very close to the literature value and also had a narrow range, indicating a pure product and therefore deeming recrystallization unnecessary. However, if the acid need to be purified, methanol would be used as the recrystallizing solvent. The 4-nitrobenzyl alcohol product had a percent yield of 24.44%. Compared to the acid product as well as the theoretical percent yield of 50%, this value was low. This may have been due to the numerous amount of extractions carried out using dichloromethane. Rather than using the minimal amount of dichloromethane, excess dichloromethane was used by accident, decreasing the yield of the final product. The melting
The mixture was transferred to an ice bath to crystallize the product, after which the product was collected by vacuum filtration on a Hirsch funnel, washing the flask with small aliquots of cold xylene and pouring the solution over the crystals, allowing the vacuum to thoroughly dry the product. Additional drying was achieved by transferring the product to filter paper and pressing the crystals to remove any excess moisture. The product was then weighed and a melting point determined. A comparative TLC was run in Hexanes:Ethyl Acetate solvent against maleic anhydride to verify the purity of the
The hydrobenzoin (meso) product of the benzil was isolated through the techniques of recrystallization and vacuum filtration. Because there NaBH4 was the limiting reagent in the experiment, 0.005604moles of NaBH4 should yield 1.2008g of hydrobenzoin (meso). The mass of the isolated product was 0.613g, resulting in a 51.1% yield. There are many reasons to account for the loss of 48.9% of
The product obtained had a melting point of approximately 107 °C and a weight of .324 grams. Some of the product would not dissolve in water and so was removed through vacuum filtration, which left .141 g not dissolved in solution. It took 13.2 mL of sodium hydroxide to turn the solution of the product dissolved in water pink. A molecular weight of 138.63 g/mol was calculated from the data. These results indicate that the product was 2-methylbenzoic acid, the Grignard reagent was 2-methylphenylmagnesium bromide, and the unknown bromide solution was 2-methylbromobenzene. Calculations showed that the limiting reagent of the Grignard preparation was magnesium and that the experiment had a 23.13 % yield.
This reaction is spontaneous for almost all esters but can be very slow under typical conditions of temperature and pressure. The reaction occurs at a much faster rate if there is a significant amount of base (OH-) in the solution. In this lab experiment, the rate of this reaction will be studied using an ester called para-nitrophenyl acetate (PNA), which produces an alcohol,
After 10 minutes the reaction liquid was separated from the solid using a vacuum filtration system and toluene. The product was stored and dried until week 2 of the experiment. The product was weighed to be 0.31 g. Percent yield was calculated to be 38.75%. IR spectra data was conducted for the two starting materials and of the product. Melting point determination was performed on the product and proton NMR spectrum was given. The IR spectrum revealed peaks at 1720 cm-1, which indicated the presence of a lactone group, and 1730 cm-1, representing a functional group of a carboxylic acid (C=O), and 3300cm-1, indicating the presence of an alcohol group (O-H). All three peaks correspond with the desired product. A second TLC using the same mobile and stationary phase as the first was performed and revealed Rf Values of 0.17 and 0.43for the product. The first value was unique to the product indicating that the Diels-Alder reaction was successful. The other Rf value of 0.43 matched that of maleic anhydride indicating some
The cyclic ketone cyclohexanone was oxidized to adipic acid using the oxidizing agent nitric acid. The experiment yielded 0.2667 grams of adipic acid, giving a percent yield of 113.97%. Although the product was allowed to dry for one week, residual moisture was still present in the sample and a melting point could not be obtained. This error in the experiment either resulted from adding too much water or not allowing the product to remain in the Hirsch vacuum filtration for long enough to sufficiently dry.
Discussion: As seen in the melting point determination, the average melting point range of the product was 172.2-185.3ºC. The melting points of the possible products are listed as 101ºC for o-methoxybenzoic acid, 110ºC for m- methoxybenzoic acid, and 185ºC for p- methoxybenzoic acid. As the melting point of the sample
The reaction took place in a conical vial and .2mL of each of the reactant samples were added to it along with some 95% ethanol. Two drops of NaOH were added shortly after and stirred at room temperature for fifteen minutes. The vial was cooled in and ice bath and crystallized. Vacuum filtration was performed to filter the crude product. The crude product was recrystallized using methanol and filtered again. We made one change to the procedure and instead of using .7mL of ethanol we
The week after, a recrystallization was performed on the previous week’s crude product. The product ethereal solution was first heated on a steam bath until dry. During the heating, a beaker of methanol was collected and also placed on the steam bath. Once the product was dry, it was cooled to room temperature and then placed in an ice-water bath. The now boiling methanol was added to the crude crystals and a recrystallization was performed. Once completed, the now purified product was collected via Buchner vacuum filtration and stored in drawer to dry for a week. Afterwards, a melting point range of the purified product was obtained by using a Mel-temp apparatus. Lastly, an
Ascanio Sobrero studied chemistry at the University of Giessen and in 1832 he earned his doctorate degree. He became a professor of Chemistry in 1845, at the University of Turin in Italy. He was too focused with his research to have a personal life.He chose to research this, because he was studying under Théophile-Jules Pelouze at the University of Turin, who had worked with the explosive material guncotton.Gun powder was used to fight in wars and he wanted to invent something more effective.
Through this lab, we were exposed to the essential laboratory techniques used for hydrating an alkene to form an alcohol. We gained familiarity with techniques such as infared spectroscopy, separation, and extraction. Using these techniques, we performed hydroboration/oxidation to styrene to yield 2-phenylethanol. Afterwards, we evaluated the success of the lab by performing an IR. In regards to my yield, I only collected 1.007g of product while the theoretical yield was 1.8g. Therefore, my percent yield was only 56%.1 I believe that most of my error originated from the separation and extraction steps. When isolating the organic layer, minute amounts were lost as a result of not turning off the stopcock fast enough. Moreover, there might have
An ester was synthesized during an organic reaction and identified by IR spectroscopy and boiling point. Acetic acid was added to 4-methyl-2-pentanol, which was catalyzed by sulfuric acid. This produced the desired ester and water. After the ester was isolated a percent yield of 55.1% was calculated from the 0.872 g of ester recovered. This quantitative error was most likely due to product getting stuck in the apparatus. The boiling point of the ester was 143° C, only one degree off from the theoretical boiling point of the ester 1,3-dimethylbutyl, 144 ° C. The values of the
Before the start of the experiment, the theoretical yield was to be calculated. First, the limiting reagent was determined from the reagents by comparing the amount of moles. Among the three reagents involved in this experiment - camphor, sodium borohydride, and methanol, camphor was found to be the limiting reagent. The moles of camphor was less than the combined moles of the other two reagents. The theoretical yield, which is the amount of product that could be possibly produced after the completion of a reaction (“Calculating Theoretical and Percent Yield”), was found to be 0.25 g. Once the product was achieved, a percent yield of 97% was determined. As a result, the reduction of camphor to isoborneol was successful.
Abstract: This procedure demonstrates the nitration of methyl benzoate to prepare methyl m-nitrobenzoate. Methyl benzoate was treated with concentrated Nitric and Sulfuric acid to yield methyl m-nitrobenzoate. The product was then isolated and recrystallized using methanol. This reaction is an example of an electrophilic aromatic substitution reaction, in which the nitro group replaces a proton of the aromatic ring. Following recrystallization, melting point and infrared were used to identify and characterize the product of the reaction.
The purpose of this lab was to synthesize the ester isopentyl acetate via an acid catalyzed esterification (Fischer Esterification) of acetic acid with isopentyl alcohol. Emil Fischer and Arthur Speier were the pioneers of this reaction referred to as Fischer Esterification. The reaction is characterized by the combining of an alcohol and an acid (with an acid catalyst) to yield and ester plus water. In order to accomplish the reaction, the reactants were