In class, we did the carrot lab to demonstrate the movement of water going into and out of cells. Before we did this experiment, we made hypotheses. I hypothesized that the carrot soaked in fresh water would lose mass and shrink because just like your finger-tips after a bath, they become shriveled. I also thought the carrot soaked in salt water would gain mass because I thought the salt water would move into the carrot, creating the mass to be greater. After all, my hypotheses were wrong. After soaking the carrot in fresh water and salt water for 24 hours, we found that the mass of the carrot soaked in fresh water increased by 6.3% and the mass of the carrot soaked in salt water decreased by 0.5%. This is because of osmosis. Osmosis is when
My prediction is that as the concentration increases, the potato cell will lose more weight. This is because of the osmosis of water particles from the potato cell cytoplasm to the solution, resulting in a loss of weight. As the concentration decreases, the potato will lose less weight until a certain point where the osmosis of particles in and out of the potato cells will be equal. I also predict that as the salt
I know that osmosis will occur in the vegetables, but I am not sure of
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
The main purpose of the experiment was to test the idea that water would move from the higher concentration to the lower concentration. In order to test this theory, we placed potato slices in 7 different containers, each containing different concentrations of NaCl, to measure the weight change from osmosis. The containers ranged from 0M NaCl all the way to .6M NaCl. We measured the potato slices before and after placing the slices in the solutions and recorded the net change in weight to determine the tonicity of the potato cells. Our results showed that the potato slices put in a NaCl solution of .2M or higher lost weight and the potato slices put in a NaCl solution of .1M or lower gained weight. This shows that the osmolarity of the potato falls within the range of .1M to .2M, and it also proves the process of Osmosis by having the higher concentration move to the lower concentration. In addition to this, it can be concluded that the osmolarity of cells can be determined by observing the affects of osmosis.
In this gummy bear lab, the goal was to see the movement of water in cells depending on the concentration of solutes in the environment. The control group was the type of water used. The research question for this experiment was, how does concentration of solute in the environment affect water movement in cells? The hypothesis thought of for this question was that the salt water would enlarge the gummy bear the most. The distilled water would not enlarge the gummy bear as much as the salt water.
Using my knowledge of osmosis, I intend to construct an experiment to determine this. I know that water can pass both in and out of potato cells in order to equate water concentration in the cell sap with water concentration in the surrounding solution. Surely then, if water concentration levels both inside and outside of a potato cell are already equal, osmosis is no longer necessary, and as it is passive but has no incentive to occur without osmotic potential, it will not. On the other hand, when placed in a solution of unequal water concentration a potato cell will lose or gain water and weight as a
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Van’t Hoff’s Law suggests that the osmotic potential of a cell is proportional to the concentration of solute particles in a solution. The purpose of this experiment was to determine if there are any differences between the osmolalities, the no-weight-changes of osmolalities, and the water potentials of potato cores in different solutions of different solutes. The percent weight change of the potato cores was calculated through a “change in weight” method. The potato core’s weight was measured before and after they were put into different concentrations of a solute for 1.5 hours. In our experiment, there were no significant differences from the osmotic potentials of our results and the osmotic potentials of other scientists work. Ending with chi square values of 2.17 and 2.71, and p values of 0.256 and 0.337, concluding that there is no difference in water potentials of potato cores in different solutions of different solutes at varying concentrations.
Those three experiments showed that the way onion cells are dealing with the movement of water in and out of the cell is by osmosis. That Osmosis is the diffusion of water across a membrane into a solution having a greater solute concentration. The cell
The potato cells, took in, or gave out the water depending on the concentration of the solution it is surrounded in. The results were fine and by looking at the mass measured before the experiment, you can see that there is no reading which seems to be out of the line. As the weights before the experiment range between 2.31g and 2.46g, this tells us that the potato pieces were cut well, and I believe accurate enough. The results show that: - Osmosis actually took place in the experiment.
The hypothesis is that when cells are put in a solution with a different water potential than inside of them, cells will gain or lose water. If concentration of solution is the same, there will be no change in mass.
Osmosis is the movement of water molecules from high concentration to low concentration through semipermeable membranes, caused by the difference in concentrations on the two sides of a membrane (Rbowen, L.). It occurs in both animals and plants cells. In human bodies, the process of osmosis is primarily found in the kidneys, in the glomerulus. In plants, osmosis is carried out everywhere within the cells of the plant (World Book, 1997). This can be shown by an experiment with potato and glucose/salt solution. The experiment requires putting a piece (or more) of potatoes into glucose or salt solution to see the result of osmosis (a hypertonic type of solution is mostly used as it would give the most prominent visual prove of
Within every cell, a movement of a solvent occurs through a semipermeable membrane to equalize the concentration of solute on both sides of the membrane. The diffusion of water across the cell’s membrane down to its concentration gradient is called osmosis. In this case, the concentration gradient is the difference of density between one side of the cell membrane to the other. Since the cell’s membrane is permeable, particles can flow freely in and out of the cell, but the net flow will be strong in the direction of lower concentration until the system has reached a stage of equilibrium, the point at which both sides of the membrane are equal. In the
In this lab we are going to discovery how osmosis works using a semi-impermeable membrane a potato slice. Osmosis is known as the movement of water in and out of a cell. To understand how this works we must understand two terms. Hypotonic means the environment has less solutes compared to the inside of the cell. Hypertonic means that the environment has more solutes compared to the inside of the cell. With osmosis water will always move from hypotonic too hypertonic. So the question is will water move into the potato or out of the potato? Will these results change when placed in different morality of salt water? To calculate these results, we will measure the mass of potatoes cut into equal sizes then soak these potato slices in different morality of NaCl for thirty minutes and measure the mass change in each potato slice.
The purpose of this lab is to test the effect of osmosis on cucumber slices. If a cucumber slice is placed in a hypertonic solution, then the mass of the cucumber slice will decrease. Whereas, if