Determining G on an Incline Essay

982 WordsOct 21, 20124 Pages
Determining g on an Incline Lab #1 Theory: During the early part of the seventeenth century, Galileo experimentally examined the concept of acceleration. One of his goals was to measure the acceleration due to gravity, or the acceleration of freely falling objects. Unfortunately, his timing devices were not precise enough to measure the free fall time directly. He decided to “dilute” gravity by using fluids, inclined planes, and pendulums. Galileo’s idea of diluting gravity using inclined planes worked like this: the acceleration of a rolling cart on an inclined plane is small, therefore is easy to measure; when the angle of the incline gets bigger, the acceleration will get bigger; by measuring the dependence of the acceleration on…show more content…
Using Vernier, we clicked collect while releasing the cart after motion detector starts to click. This was done moving the hand quickly out the path. Using logger pro, indicated which portion was to be used by dragging across the graph to indicate the starting and ending times. Then the linear button was clicked to perform the linear regression of the selected data. The Linear Button was used to determine the slope of the velocity vs. time graph, only using the portion of the data for times when the cart was freely rolling. We found the acceleration of the cart from the fitted line. Record the value in the data table. These steps where repeated 5 mores times. Measured the length of the incline, x which is the distance between the two points of the ramp. Measure the height, h, the height of the book(s). The last two measurements was used determine the angle of the incline. Raise the incline by placing a second book under the end. Adjust the book so that distance, x, is the same as the previous reading. Repeated these steps with 3, 4 and 5 books. ANALYSIS DATA The greater the incline and greater the height, the greater the acceleration of the cart. -This experiment measured the acceleration of a cart moving down a sloped track in order to find a relation between the acceleration of an object and the sine of the angle at which it is moving. There were three separate experimental stages, with the variable being the angle at which the