Exercise increases heart rate by a process of sympathetic autonomic stimulation. Sympathetic (adrenergic) nerves increase the excitability of the sino-atrial node and reduce the P-R interval .As exercise continues, the physiological changes in the body are continuously monitored by a number of physiological systems and the balance of activity of the sympathetic system (speeding up) and the parasympathetic system (slowing down) is constantly adjusted. When exercise is over, the heart rate does not drop immediately as the body has to undergo a period of re adaption to return to the resting state.
As the intensity of exercise increased, so did the rates of the heart and breathing. After a small period of rest, the heart rate and breathing rate both decreased to a point close to their resting rate. This proved the stated hypothesis. First, the hearts average resting rate was recorded to be 76 bpm. The heart is therefore transporting oxygen and removing carbon dioxide at a reasonably steady rate via the blood. During the low intensity exercise (Slow 20) the heart rate increases to 107 bpm, which further increases to 130bpm at a higher intensity level (Fast 20). The heart therefore needs to beat faster to increase the speed at which oxygen is carried to the cells and the rate at which carbon dioxide is taken away by the blood.
The controlled variable included the exercise bike and heart rate monitor. There are several limitations, systematic and random errors that should be considered when interpreting these results. (4) The controlled variables were not tested before this experiment to see if they were working and reliable. Figure 2 heart rate was quite inconsistent and did not follow the pattern of the other results, which maybe suggest a random error with the heat rate monitor. A systematic error could include the fitness of the participants. One of the test subjects is an endurance athlete and the other does not compete in any sport. This would affect the results because for the endurance-trained athlete, from their training they increase their cardiac output results from a substantial increase in maximal stroke volume. In untrained persons, cardiac output increases in response to exercise primarily by an increase in heart rate. The endurance-trained athlete does so mainly by an increase in stroke volume. Simply meaning that although both participants are doing the same cadence and length the endurance athletes skewers the results by already having an increased rate in stroke volume. Another systematic error may include the rate of perceived effort. For the most accurate results, the measured maximum heart rate would be necessary to give an accurate cadence to ride at.
Effect of Exercise on Arterial Pressure and Vascular Resistance Abbie DeBerg Ms. Brantley May 30, 2012
During exercise there is an increase in cardiac output, which corresponds to an increase in maximal oxygen consumption. With the increase in oxygen consumption, a greater increase in blood flow occurs. This means there is more oxygen circulating in the blood for the tissues to take up. Due to the increase in blood flow, vasoconstriction of arterioles occurs to maintain mean arterial pressure (Bassett & Edward, 1997). This limits oxygen consumption because some of the blood flow is directed to the brain and skin. It is further pointed out that the heart is another limiting factor because it determines how much blood and oxygen are supplied to the muscles especially when blood flow exceeds maximal cardiac output (Bassett & Edward,
The range of normal resting systolic BP for the subjects in this experiment is 115-125 mmHg. Did systolic BP increase, decrease, or not change with exercise?
Why does Systolic BP increase when the participants start to exercise while diastolic remains constant when compared to standing?
Prediction: For my prediction, I predict that as the amount of exercises increases, the heart rate will increase too. Looking at my graph, I can see a clearly that there is a strong relationship between variables:
Introduction: In this experiment, cardiovascular fitness is being determined by measuring how long it takes for the test subjects' to return to their resting heart rate. Cardiovascular fitness is the ability to "transport and use oxygen while exercising" (Dale 2015). Cardiovascular fitness utilizes the "heart, lungs, muscles, and blood working together" while exercising (Dale 2015). It is also how well your body can last during moderate to high intensity cardio for long periods of time (Waehner 2016). The hypothesis is that people who exercise for three or more days will return to their resting heart rate much faster than people who only exercise for less than three days.
The heart rates of participants was tested before the step test, one minute, two minutes, and three minutes after the step test was performed in this experiment. Since heart rate increases while someone is performing physical activity, it was expected that heart rates of the students would be higher than before the step
Method and results - The study was compiled of seven female students from the University of Huddersfield. For the exercise a step was used, a polar heart rate monitor was used for each participant with an independent assessor timing the participants, and recording the readings. Results of the study showed there was an increase in heart rate when performing mild exercise.
The effects of exercise on blood pressure, heart rate, respiration rate and electrical activity of the heart were assessed. The measurements of respiration rate, pulse rate and blood pressures were noted as described in Harris-Haller (2016). Data was first taken from subjects in a relaxed position and then followed by sets of reading after exercising based on one minute intervals. The data also noted sitting ECG traces from Harris-Haller (2016). The respiratory rate, pulse, blood pressure, P wave, QRS complex and T wave were defined for each subject. The class average was calculated for males and females and graphed to illustrate the results by gender for each cardiopulmonary factor.
The literature on the effects of exercise of cardiac output maintains the idea that exercise should affect cardiac output- pulse rate, systolic blood pressure, diastolic blood pressure, QRS-pulse lag, P-T and T-P intervals, because of increased heart rate. For our experiment, we tested this theory by measuring our cardiac output before and after some rigorous exercise. We measured the individual cardiac output and then combined the data to compose a class-wide data average. We compared the results of the experiment to what we expected, which was that exercise does affect our heart. Our data from this experiment supported the notion that exercise does, in fact, change cardiac output.
The heart rate is a measurement of how many times the heart beats in a minute. Physically fit people tend to have a lower heart rate and during intense exercise tend to have lower rates as well. A decrease of heart rate at both rest and at fixed intensity of sub-maximal exercise [7] occurs a few months after an exercise program is begun. One’s heart rate reflects the amount of work the heart must do to meet an increase of demands of the body when engaged in activity. Heart Rate tends to increase proportionally with intensity oxygen uptake [16].
I predict that during exercise the heart and respiratory rate (RR) will increase depending on the intensity of exercise and the resting rates will be restored soon after exercise has stopped. I believe that the changes are caused by the increased need for oxygen and energy in muscles as they have to contract faster during exercise. When the exercise is finished the heart and ventilation rates will gradually decrease back to the resting rates as the muscles’ need for oxygen and energy will be smaller than during exercise.