The amount of light can change the number of the bubble which is the air that the photosynthesis product, it increase the speed to produce the air. when the intensity of light is high, you will get a greater rate of photosynthesis. Light intensity is usually defined as the energy hitting an area over some time period. At low light intensities and when light intensity increases, the rate of the light-dependent reaction, and therefore photosynthesis generally, increases proportionately. The more photons of light that fall on a leaf, the greater the number of chlorophyll molecules that are ionized and the more ATP and NADPH are generated. As light intensity increases, the rate of photosynthesis will increase as long as other factors are inadequate
The purpose of this experiment was to investigate the effects of light intensity on the rate of photosynthesis in a Moneywort plant. By observing the plant in distilled water mixed with sodium bicarbonate, different light bulbs were targeted onto the plant. The measurement of the amount of bubbles present on the plant during the trial of the experiment enabled us to identify the comparisons between the activity of the light and the process of photosynthesis.
Figure one demonstrates that when light intensity increases, there is an increase in oxygen. This occurs due to lights effect on the photosystem II ability to transfer electrons and hydrogen ions from water to NADP+. An increase of light, increases the rate of water splitting within the chloroplasts, producing the O2 by-product. (Reece, et al, 2015) (Ping et al, 2015)
The initial experiment was a success. As our treatment group spent more and more time under the lights, the absorbance rate continues to decrease toward zero. Once our 30 minutes were up, the absorbance rate in each tube was significantly lower than at the start of our experiment. In contrast the two control groups did significantly lower the absorbance. Each control lacked one of the vital aspects of photosynthesis, one being light, and the other being chloroplast. Neither of the control groups (Control 1 or 2) showed any signs of photosynthesis. Control 1 was exposed to light, but contained no photosynthetic organelles thus the absorbance throughout the 30 minutes varied minimally, mostly staying stagnant. Control two which contained chloroplast but was not exposed to any light failed to lower the absorbance at all and in fact increased the absorbance over the 30 minutes. However, the treatment group contained both and ultimately performed photosynthesis as we expect therefore, confirming our assumption that chloroplast were the organelles required for photosynthesis in plants and that light is required to perform said photosynthesis. The treatment group, containing both the chloroplast and being exposed to light provided evidence that photosynthesis was taking place as the absorbance lowered at each 10-minute interval. Having a less absorbance would be desired because as DCIP became reduced we would expect the solution to become more and more clear, thus less
The rate of photosynthesis can be determined different ways. Because oxygen is a product of photosynthesis and the Elodea plant is submerged in water, the oxygen is released in bubbles that rise to the surface of the water in the beaker. In this experiment, the rate of photosynthesis for each degree of light intensity can be measured by counting the number of bubbles released every 30 seconds for five minutes at each distance. The rate is the number of bubbles released per minute.
When using algae beads and a CO2 indicator, the process of Photosynthesis and Cellular Respiration can be measured. In this experiment the intensity of light will be altered in each trail, and the rate of Photosynthesis will then be measured. As you rise from low light intensity to higher light intensity, the rate of photosynthesis will increase because there is more light available to drive the reactions of photosynthesis. However, once the light intensity gets high enough, the rate won’t increase anymore since there will be more-light than water and CO2; there will not be enough components from light, water, and CO2 to create the process of Photosynthesis. As CO2 dissolves and the amount of CO2 goes up, the pH will lower, which means the solutions color will change varying form red, orange and yellow, all pending on what the pH is at. CO2 will be produced from respiration, all while photosynthesis absorbs the CO2. This means that when the rate of photosynthesis is less than respiration, pH levels will decrease, and CO2 concentration will increase. Vis versa, when pH levels increase
Duckweed is a small aquatic plant that is able to grow rapidly, making it the ideal specimen for our experiment. It is hypothesized that altering the amount of light received by duckweed will alter its photosynthetic rate. It is predicted that a lower light intensity will lower the rate of growth in duckweed.
This experiment demonstrates the effects of pH on the rate of photosynthesis by examining the behavior of leaf disks in different pH solutions under light. In this experiment, we used five different pH levels: pH 5, pH 6, pH 7, pH 8 and pH 9. These solutions were created using a combination of hydrochloric acid and sodium hydroxide. Spinancia olcerea or spinach, leaves were used in the experiment to examine the effects of pH on the rate of photosynthesis. The rate of photosynthesis was measured by counting the number of leaf disks that rose to the surface of the solution after each minute. In acidic solutions, the rate of photosynthesis increased while in basic solutions, the rate of photosynthesis decreased.
Photosynthesis is the conversion of light energy to chemical energy into sugars. It is the process in plants that uses carbon dioxide, water, and sunlight from its surroundings and releases oxygen as a byproduct (6H2O+6CO2+light energy -> C6H12O6+6O2). Photosynthesis is required for plants because they are autotrophs, organisms that make their own food. Plants require a specific environment that is ideal to them to be able to carry out the process. Environmental conditions can either increase or decrease the rate of photosynthesis. Things like colors of light, pH, and temperature can all affect the rate of photosynthesis in plants.
The leaves of a plant are the main photosynthetic organs and are involved in gas exchange and water transportation throughout a plant (Evans et al, 17). A leaf typically consists of an upper and lower epidermis, the mesophyll cells, veins, guard cells and stomata. The mesophyll cells contains spongey cells which have large gaps between each cell to allow oxygen and carbon dioxide circulation. The mesophyll cells contain palisade cells, which are located beneath the upper epidermis. The palisade cells contain many chloroplasts, which are green organelles. Located in the internal layers of chloroplasts is the pigment chlorophyll which is involved in trapping the light energy in photosynthesis (Evans et al, 17).
8) Steps 1 - 8 were repeated using the wavelengths of 360 nm to 900
Photosynthesis is a vital process that autotrophs use to transfer light energy into chemical energy. Photosynthesis ultimately produces O2 and glucose. It, like many other biological processes, can be affected by environmental variables. The variable that we altered in the following experiment are intensity, light wavelengths, and pigment types. In order to do this, we conducted three experiments. In the first experiment, we examined the effect of light intensity by placing vials with chloroplasts with DPIP at different light distances in which the results varied. Initially, 30cm away was the most effective for photosynthesis. Then 24cm appeared to be the most effective. Followed by 49cm at minutes 25 and 30. In the second experiment, we
In this experiment, I tested the theory of how light would affect the growth of a bean plant. According to gardenguides.com, lack of light is detrimental to plant growth.”Plants that don't get enough light don't have the resources they require, and fail to bloom or fruit.” It is also stated that every plant will need a different strength of sunlight such as full sun, partial sun, or indirect sunlight (also known as full shade). Plants that receive inadequate amounts of sunlight will not thrive.The reasoning behind this is due to a process called Photosynthesis, stated in gardeningknowhow.com. Photosynthesis is a chemical process which converts energy in the form of light into a chemical energy which is a vital food source for plants to thrive.
Introduction: Photosynthesis can be defined as a solar powered process that removes atmospheric carbon dioxide and transforms it into oxygen and carbohydrates (Harris-Haller 2014). Photosynthesis can be considered to be the most important biochemical process on Earth because it helps plants to grow its roots, leaves, and fruits, and plants serve as autotrophs which are crucial to the food chain on earth. Several factors determine the process of photosynthesis. Light is one these factors and is the main subject of this experiment. The intensity of light is a property of light that is important for photosynthesis to occur. Brighter light causes more light to touch the surface of the plant which increases the rate of photosynthesis (Speer 1997). This is why there is a tendency of higher rates of photosynthesis in climates with a lot of sunlight than areas that primarily do not get as much sunlight. Light wavelength is also a property of
All this lights have equally conurbation towards plants growth but without any light then there is no process of photosynthesis which means there no plant growth at all. Photosynthesis is the procedure whereby radian vitality from the sun is changed over to the concoction bond vitality of glucose. In plants it happens in chloroplasts which concentrated cells. Chlorophyll atoms are instrumental in the first step, which is the change of light vitality to the substance bond vitality of ATP. Vitality to change carbon dioxide and hydrogen to glucose is then given by the ATP. Oxygen is discharged as a waste result of procedure. The reaction is shown below:
Without photosynthesis we would not be able to receive energy. We should be more appreciate of plants, without them we would not survive. This paper will explain the basic components require for photosynthesis, the role of chlorophyll, how energy is transferred, and photosystems I and II and the most precious product results of photosynthesis.