Enzymes and Factors That Affect Them Rewrite title
Zuryab Rana
October 21, 2017
Abstract:
In the experiment we used Turnip, Hydrogen Peroxide, Distilled Water, and Guaiacol as my substances. On the first activity, Effect of Enzyme concentration of Reaction Rate for low enzyme concentration, we tested three concentrations of the turnip extract, and hydrogen peroxide. For the Turnip Extract I used 0.5 ml, 1.0 ml, and 2.0 ml. For hydrogen peroxide we used 0.1 ml, 0.2 ml, and 0.4 ml. We used a control to see the standard, and used a control for each enzyme concentration used. The control contains turnip extract and the color reagent, Guaiacol. We prepared my substrate tubes separately from the enzyme tubes. My substrate tube
…show more content…
I put one test tube for each control, substrate, and enzyme in the 4° C (ice bath), 23° C (room temperature), 37° C (body temperature), and 60° C (water bath). Add the inhibitor that was used and what it was used for.
Introduction:
Enzymes are biological catalysts, which means it decreases activation energy in reactions. The lower activation energy in a reaction, the faster the reaction rate. Many enzymes alter their shape when they bind to the activation site. This is called induced fit, meaning for the enzyme to work to its full potential it has to change shape to binding substrate. The location of enzyme’s activation site is on the surface of the enzyme, where the binding of substrates take place. Enzyme activity can be influenced by a variety of environmental factors. If the concentration of enzyme is low, and there is a great deal of substrate, then increasing enzyme concentration results in more molecules available to convert substrates to products. Thus, increasing enzyme concentration can increase reaction rate. If substrate concentrations are low, and many of the existing enzymes are idle because of a lack of substrate, then adding enzyme will have no effect on reaction rate. Enzyme concentration affects the enzyme activity, because the more enzyme concentration the faster the reaction rate, until it hits it’s limiting factor. When substrate concentration is increased, it also increases rate of reaction. Temperature plays an important
The preparation for the experiment started by gathering the solutions of enzyme Peroxidase, substrate hydrogen peroxide, the indicator guaiacol and distilled water. Two small spectrometer tubes and three large test tubes with numbered labels. In addition, one test tube rack, one pipet pump and a box of kimwipes were also gathered. Before the experiment, the spectrometer must be set up to use by flipping the power switch to on. Following, the machine was warmed up for 10 minutes and the filter lever was moved to the left. In addition, I set the wavelength to 500 nm with the wavelength control knob. Before the experiment, I had to create the blank solution by pipetting 0.1 ml of guaiacol, 1.0 ml of turnip extract and 8.9 ml water into tube #1. Following the creation of the blank, a control 2% solution was created.
My partner and I choose glucose, colchicine, cold temperature (0 degrees Celsius), and warm temperature (37 degrees Celsius) as the addition factors. The tetrahymena were exposed exposed to their condition for ten minutes before the India ink was placed in their microcentrifuge. The tertrahymena were fixed on a slide every ten minutes after the ink was placed in the microcentrifuge. In this experiment there are two controls. There is positive control and a negative control. The untreated sample is tetrahymena that did not have any other conditions besides the ink. Then before the sample was placed on the slide they were fixed. The treated sample was tetrahymen mixed with
Question: How does changing enzyme concentration or temperature affect the reaction time of enzyme activity?
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is
To ensure the experiment was kept as a fair test a number of variables were controlled. The temperature of the solutions was kept constant by placing the boiling tubes into a test tube rack and setting it into a water bath with a fixed temperature of 25oC. The temperature needed to be kept low and fixed as a high temperature would denature the enzymes, they would therefore be unable to break down the gelatine and no results would be produced from the experiment. Keeping a constant temperature also meant that the solutions reacted at the same rate.
Students will be observing normal catalase reaction, the effect of temperature on enzyme activity, and the effect of pH on enzyme activity in this experiment. The enzymes will all around perform better when exposed in room temperature than when it is exposed to hot and cold temperatures. This is based on the fact that the higher the temperature, the better the enzymes will perform, but as the temperature reaches a certain high degree, the enzymes will start to denature, or lose their function.
In part II of the lab six small glass tubes were obtained in a test tube rack. Ten drops of distilled water were then added to test tube 1, five drops to tubes 2-4, and no drops in tubes 5 and 6. Five drops of 0.1M HCl were added to test tube 5 and five drops of 0.1M NaOH to test tube 6. Five drops of enzyme were then added to all tubes except tube 1. Tube 3 was then placed in the ice bucket and tube 4 was placed in the hot bucket at 80-900C for five minutes, the remaining tubes were left in the test tube rack. After the five minutes five drops of 1% starch was added to every tube and left to sit for ten minutes. After ten minutes five drops of DNSA were then added to all the tubes. All the tubes were then taken and placed in the
Independent: Substrate Concentration: Throughout the experiment, the concentration of the substrate used will be increased in order to determine the effect of an increase of substrate concentration on enzyme activity. The substrate throughout the experiment will be a hydrogen peroxide solution and an original 30% concentration will be diluted with water into 10% and 5% concentrations in order to observe the effect of
In first half of the experiment, we tested 5 different compounds which one could work as an inhibitor. When using a 5-ml pipette with a green pump, we placed 5 ml of distilled water in each small labeled test tube. After that, we went to place 8 drops of potato extract, 8 drops of catechol, drops of an inhibitor, and then drops of distilled water. The only concentration that we had alternated in the experiment would be the drops of catechol and drops of distilled water. In tube 1, we placed 8 drops of catechol with 8 drops of distilled water in the tube, containing NO potato extract. In tube 2, we placed 8 drops of catechol, NO distilled water, and 8 drops of potato extract. In tube 3, we placed NO drops of catechol, 8 drops of
Enzymes are catalysts that function to speed up reactions; for example, the enzyme sucrose speeds up the hydrolysis of sucrose, which breaks down into glucose and fructose. They speed up reactions but are not consumed by the reaction that is taking place. The most important of the enzyme is the shape as it determines which type of reaction the enzyme speeds up. Enzymes work by passing/lowering and energy barrier and in doing so; they need to bind to substrates via the active. Once they do, the reaction speeds up so much more quickly than it would without the enzyme. Coenzymes and cofactors aid the enzyme when it comes to binding with the substrate. They change the shape of the active site so the substrate can bind properly and perform its function.
Organisms cannot depend solely on spontaneous reactions for the production of materials because they occur slowly and are not responsive to the organism's needs (Martineau, Dean, et al, Laboratory Manual, 43). In order to speed up the reaction process, cells use enzymes as biological catalysts. Enzymes are able to speed up the reaction through lowering activation energy. Additionally, enzymes facilitate reactions without being consumed (manual,43). Each enzyme acts on a specific molecule or set of molecules referred to as the enzyme's substrate and the results of this reaction are called products (manual 43). As a result, enzymes promote a reaction so that substrates are converted into products on a faster pace (manual 43). Most enzymes are proteins whose structure is determined by its sequence of its amino acids. Enzymes are designed to function the best under physiological conditions of PH and temperature. Any change of these variables that change the conformation of the enzyme will destroy or enhance enzyme activity(manual, 43).
The null hypothesis for the first experiment was that substrate concentration would have no effect on the reaction rate. It was hypothesized that the reaction rate would increase with rising substrate concentrations, until all active sites were bound. The null hypothesis for the second experiment was that temperature would not have an effect on reaction rates. It was hypothesized that until the enzyme is denatured, as temperature increased, so would the reaction rate.
There were three test tubes in which the experiment was held. A relatively equal sized portion of raw potato (this contained the enzyme [a biological catalyst] hydrogen peroxidase) was placed in each tube. Then, enough water to cover the potato was added. Proceeding this, each of the test tubes were assigned a temperature; cold, room temperature or warm (this was written on the tag so that they were not confused). The test tube destinated ‘cold’ was placed in a ice bath for five minutes. At the same time, the ‘hot’ test tube was placed in a hot water bath for five minutes. Meanwhile, the room temperature test tube sat at room temperature for five minutes. When the five minutes were over, the test tubes were returned to the rack (so that they were able to be observed). Then, the test tubes were allowed to sit at room temperature for five more minutes. Once that period of time was over, 2 ml of hydrogen peroxide (the substrate) was added to each tube.
An Enzyme is a protein, which is capable of starting a chemical reaction, which involves the formation or breakage of chemical bonds. A substrate is the surface or material on or from which an organism lives, grows, or obtains its nourishment. In this case it is hydrogen peroxide. This lab report will be explaining the experiment held to understand the effects of the changes in the amount of substrate on the enzyme’s reaction.
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or