The synthesis of acetaminophen involves the attraction of the electrophilic carbonyl group of acetic anhydride to the nucleophilic NH2
7. Plan: Each student in a group of three will work to purify the product of the reaction with cis-stilbene, trans-stilbene, or styrene. The crude products will be purified through recrystallization. This purification process will be performed several times. When the recrystallization is complete, a vacuum filtration will be executed to filter out the crystals. An NMR spectrum will be taken of the recrystallized product.
The reaction is carried out in saturated aqueous ammonium chloride solution. Thus no special drying of solvents, reagents, or glassware is required. The reaction mechanism for this experiment can be seen below (Fig. 2)
The purpose of this experiment is to examine the reactivities of various alkyl halides under both SN2 and SN1 reaction conditions. The alkyl halides will be examined based on the substrate types and solvent the reaction takes place in.
The experiment is to observe a variety of chemical reactions and to identify patterns in
Purpose: The purpose of this experiment is to observe a variety of chemical reactions and to identify patterns in the conversion of reactants into products.
A 0.5 g of sodium tungstate dihydrate was weighed and transferred into a 50-mL round-bottom flask with a magnetic stir bar. Approximately 0.6mL of Aliquat 336 was then transferred carefully into the round bottom flask using a 1mL syringe. The round bottom flask and its contents were then set up in an oil bath. 11mL of 30% hydrogen peroxide and 0.37 g of potassium bisulphate were added to the reaction mixture in the round bottom flask and stirred using a magnetic stirrer. Lastly, 2.5mL of cyclohexene was added using automatic dispenser and the mixture stirred. A condenser was fitted on the round bottom flask, clamped and attached to water horses. The reaction mixture was then heated on the oil bath and the reflux process initiated for an hour while stirring the mixture vigorously. Half way while rinsing, any trapped cyclohexene in the condenser was rinsed. After 1 hour, the round bottom flask was rinsed
The reaction took place in a conical vial and .2mL of each of the reactant samples were added to it along with some 95% ethanol. Two drops of NaOH were added shortly after and stirred at room temperature for fifteen minutes. The vial was cooled in and ice bath and crystallized. Vacuum filtration was performed to filter the crude product. The crude product was recrystallized using methanol and filtered again. We made one change to the procedure and instead of using .7mL of ethanol we
Objective: The objective of this lab is to observe the synthesis of 1-bromobutane in an SN2 reaction, to see how a primary alky halide reacts with an alcohol.
The product obtained had a melting point of approximately 107 °C and a weight of .324 grams. Some of the product would not dissolve in water and so was removed through vacuum filtration, which left .141 g not dissolved in solution. It took 13.2 mL of sodium hydroxide to turn the solution of the product dissolved in water pink. A molecular weight of 138.63 g/mol was calculated from the data. These results indicate that the product was 2-methylbenzoic acid, the Grignard reagent was 2-methylphenylmagnesium bromide, and the unknown bromide solution was 2-methylbromobenzene. Calculations showed that the limiting reagent of the Grignard preparation was magnesium and that the experiment had a 23.13 % yield.
As the acid was being added, the mixture was being stirred over a stir plate. Once completed, the reaction mixture was poured from the round bottom flask into a 500 mL separatory funnel and its top (organic) layer was extracted into another beaker. The bottom (aqueous) layer was placed back into the funnel and extracted twice with 50.0 mL of ethyl ether each. The newly extracted layers were combined and dried over magnesium sulfate (MgSO4). The dried solution was the decanted into a beaker to remove the MgSO4 salts and the product solution was collected via Buchner vacuum filtration. The resulting product was transferred into an Erlenmeyer flask with an inverted beaker on top and stored in a drawer.
the one that helped me lose the most weight. In addition, once I stopped eating
The purpose of this lab is to understand the process of eliminating an alkyl halide to form an alkene. The experiment is carried out by first converting the alcohol, 2-methy-2-butanol, into the alkyl halide of 2-chloro-2-methylbutane that will then be put through dehydrohalogenation that favors elimination reaction (E2) to create a mixture of 2-methyl-2-butene and 2-methyl-1-butene. A fractional distillation will be taken to purify the mixture and an additional gas chromatography will be done to further analyze the mixture composition. A bromide test will be done to determine the product of an alkene in the experiment.
The mixture was stirred for 2 h at room temperature. The reaction mixture was stirred at the same conditions (–10◦C) for 2 h, and then the mixture was allowed to warm up to room temperature and was stirred for 4 days. The solvent was removed under reduced pressure and the viscous residue was purified by flash column chromatography (silica gel powder; petroleum ether–ethyl acetate, 10:1). The solvent was removed under reduced pressure and the product 4 was obtained. The characterization
Once cooled, the mixture was then transferred to a separatory funnel using the funnel while avoiding adding the boiling chip. 10 ml of water was then added to the mixture. The mixture was gently shaken and the phases were allowed to separate. The funnel was then unstopped and the lower aqueous phase was drained into a beaker. 5 ml of 5% aqueous NaHCO3 was added and then shaken gently. A great deal of caution was taken into consideration because of the production of carbon dioxide gas which caused pressure to develop inside the funnel. The pressure needed to be released so the funnel was vented frequently. The phases were allowed to separate and the lower aqueous phases was drained into the beaker. After draining, 5 ml of saturated NaCl was added to the funnel and then shaken gently. Once again, the phases were allowed to separate and the lower aqueous phase was drained into a beaker. An ester product was produced and was transferred into a 25 ml Erlenmeyer flask. This organic product was then dried over anhydrous Na2SO4 to trap small amounts of water in its crystal lattices thus removing it from the product. Finally the ester was decanted, so that the drying agent was excluded from the final product.