An enzyme also known as a protein, is a biological catalyst which speeds up chemical reactions by lowering the activation energy to increase the rate in which the reaction occurs. The enzyme used was amylase, which breaks down starch molecules into maltose. PH, substrate concentration, salt concentration, and temperature. When enzymes reach a low temperature, the activity is slowed down of molecule movement, but the enzyme is not destroyed. Once enzymes are placed in optimal temperatures once again, it will restore its activity to a normal rate. When enzymes reach too high above optimal temperature, the enzyme is denatured and cannot be restored. In the experiment performed the activity of breaking down starch in fungal and bacterial amylase was being tested at a range of temperatures and time. The fungal and bacterial amylase work best at optimal temperature. Amylase will function best at sixty degrees Celsius at 10 minutes when starch had been one hundred percent hydrolyzed. Hydrolyzed is the breakdown of molecules through addition of water. The experiments independent variables were the time, temperature and enzyme used. The dependent variable was the enzyme activity that broke down the starch into maltose. The controlled variables were the temperature baths, the iodine drop amount, the mixture drop amount, and location of experiment. The control group was the zero minutes without amylase at
Students will be observing normal catalase reaction, the effect of temperature on enzyme activity, and the effect of pH on enzyme activity in this experiment. The enzymes will all around perform better when exposed in room temperature than when it is exposed to hot and cold temperatures. This is based on the fact that the higher the temperature, the better the enzymes will perform, but as the temperature reaches a certain high degree, the enzymes will start to denature, or lose their function.
Amylase is an enzyme found in the human body. It is made in only two places, the pancreas and in the salivary glands. Amylase is an important enzyme because it breaks down starch. The enzyme works by binding with the starch substrate and breaking it down to its base component of glucose. There is a difference in the way that salivary and pancreatic amylase work. The salivary amylase breaks down the simple carbohydrates in the form of starch, starting the digestion process. Pancreatic amylase works to process the more complex carbohydrates that are in the stomach and intestines. The efficiency of the enzyme depends on environmental factors including temperature, pH level, inhibitors, activators, number of enzymes available, and number of substrates
These results show how temperature of extreme high, or low affects enzyme activity. The highest rate of enzyme activity occurred at 37 Cº. Anything that was hotter or cold than 37 Cº slowed the reaction rate. As I thought, 100 degrees would denature the enzyme, and that was the case. The data provided shows exactly what temperatures enzymes work best, and worst. The objective was achieved as we discovered the different reaction rates under different temperatures. The results are reliable, as we know enzymes do not work well when under extreme heat or denaturation occurs. What I learned in this experiment was that enzymes don’t work well under cold temperatures because they tend to move slower. My hypothesis did not quite match, because I thought they work best at lower temperatures.
A protein has multiple existing structures, these are the primary, secondary, tertiary and quaternary structures which occur progressively. A protein is essentially a sequence of amino acids which are bonded adjacently, and interact with one another in various ways depending on the R group that the amino acid contains. There are 20 different amino acids which are able to be arranged in any given order, thus giving rise to a potential 2.433x1018 (4.s.f) different combinations, and therefore interactions between the various amino acids.
Enzymes are biological catalysts. They work by lowering the activation energy needed to initiate a chemical reaction. Enzymes work within an optimal temperature and optimal pH. Enzymes are highly specific for a single substrate. The Enzyme is usually much larger in size than the substrate it binds to. In some cases, an enzyme requires something called a cofactor to begin the chemical reaction. There were four different experiments that were executed in the enzyme lab. Experiment 7.1, the first experiment, was performed to test the effect of temperature on enzymatic
In this lab our group observed the role of pancreatic amylase in the digestion of starch and the optimum temperature and pH that affects this enzyme. Enzymes are located inside of cells that increase the rate of a chemical reaction (Cooper, 2000). Most enzymes function in a narrow range of pH between 5 through 9 (Won-Park, Zipp, 2000). The temperature for which enzymes can function is limited as well ranging from 0 degrees Celsius (melting point) to 100 degrees Celsius (boiling point)(Won-Park, Zipp, 2000). When the temperature varies in range it can affect the enzyme either by affecting the constant of the reaction rate or by thermal denturization of the particular enzyme (Won-Park, Zipp, 2000). In this lab in particular the enzyme, which was of concern, was pancreatic amylase. This type of amylase comes from and is secreted from the pancreas to digest starch to break it down into a more simple form called maltose. Maltose is a disaccharide composed of two monosaccharides of glucose. The presence of glucose in our experiment can be identified by Benedicts solution, which shows that the reducing of sugars has taken place. If positive the solution will turn into a murky reddish color, where if it is negative it will stay clear in our reaction. We can also test if no reduction of sugars takes place by an iodine test. If starch is present the test will show a dark black color (Ophardt, 2003).
Temperature is a measure of kinetic energy. As this movement increases, collision rate and intensity, and therefore reaction rates, increase. This experiment was conducted to determine if there is a minimum temperature that increase kinetic energy and denature enzymes to slow enzymatic reactions or fail to catalyze them. The experimental results indicate an increase in temperature will increase reaction rates until proteins denature.
During these experimental procedures, the implication of multiple different temperatures on fungal and bacterial amylase was studied. In order to conduct this experiment, there were four different temperatures used. The four temperatures used were the following: 0 degrees Celsius, 25 degrees Celsius, 55 degrees Celsius, and 80 degrees Celsius - Each temperature for one fungal and one bacterial amylase. Drops of iodine were then placed in order to measure the effectiveness of the enzyme. This method is produced as the starch test. The enzyme was tested over the course of ten minutes to determine if starch hydrolysis stemmed. An effective enzyme would indicate a color variation between blue/black to a more yellowish color towards the end of the time intervals, whereas a not so effective enzyme would produce little to no change in color variation. According to the experiment, both the fungal amylase and bacterial amylase exhibited a optimal temperature. This was discovered by observing during which temperature and time period produced a yellow-like color the quickest. Amylase shared a similar optimal temperature of 55 degrees Celsius. Most of the amylases underwent changes at different points, but some enzymes displayed no effectiveness at all. Both amylases displayed this inactivity at 0 degrees Celsius. At 80 Celsius both the enzymes became denatured due to the high temperatures. In culmination, both fungal and bacterial amylase presented a array of change during it’s
Amylase experiment # 2 was done to see how the pH affected the efficacy of the enzyme. First we collected all of the materials that were necessary to make this experiment. We needed five clean test tubes, the following standard solutions, 1% Starch Solution pH 3,1% Starch Solution pH 5,1% Starch Solution pH 7,1% Starch Solution pH 9,1% Starch Solution pH 11
The purpose of this experiment was to come up with the optimal temperature of the Fungal Amylase, Aspergillus oryzae, and the Bacterial Amylase, Bacillus liceniformis, as well as to identify if different temperatures would indeed affect the enzyme amylase by either slowing down the process or denaturing the enzyme. Enzymes are complex proteins, they can be thought of as a substance fabricated by a living organism that behaves as a stimulus, otherwise known as a catalyst, to cause a specific biochemical reaction. This experiment was performed by keeping the amylase mixed with starch at different temperatures, either in the heated water or in the ice bath. The temperatures varied at either 0, 25, 55, or 85 degrees Celsius. After a certain amount of time we would then move the test tubes containing the amylases and position them on a plate where iodine was then added to the starch amylase solution. We would do the same thing at different time intervals to see exactly how the enzyme catalyzed the starch. The hypothesis of this experiment was thought to be that the higher the temperature the slower the enzyme would then hydrolyze the starch. Both the Fungal and the Bacterial Amylase had an optimal temperature of 55 degrees Celsius as shown by our concluded results in this
Enzymes work by reducing the amount of activation energy needed for a reaction to take place, this means that reactions are processed much more quickly at temperatures
Bacterial amylases operate at higher temperatures than do fungal amylases. Fungal amylases react rapidly at lower temperatures; fungal amylases are used as an agent for alcohol fermentation for grain (Underkofler et al, 1958). Fungal amylases is said to be denatured – change shape (Alberte et al, 2012), at high temperatures above 60° C and bacterial amylases on the other hand are stable and show little denaturing at temperatures up to 85°C 3 The question answered by the experiment is if the temperature is not within the range of the enzymes (fungal and bacterial amylase) optimal temperature (higher temperature) then will the enzymes denature and if the enzymes are placed in lower temperature from optimal the activity then will it slow down enough to stop all reaction, meaning each enzyme will not be operating efficiently. Knowing about a bacterial amylases and fungal amylases optimal temperatures are important for knowing which food products and industrial products it can be used on to conserve the product because then the producer knows about which products it can be incorporated into depending on the temperature it is manufactured at.
Enzymes work by controlling the host of a chemical reactions that takes place in the body there usually responsible for a particular chemical reaction but for the experiment is was focus on how enzymes are effected by temperature because as the temperature rises of an unanalyzed reaction increasing its rate due to the additional heat increases random molecular movement. The temperature of the reaction will increase until it reaches its optimal temperature, the temperature that the enzyme has the highest rate of reaction. If the temperature of an enzyme is below optimal then the enzyme will be too slow to work or not work at all causing the rate of reaction to be low. If the temperature of an enzyme is above optimal then the enzyme will end up becoming denatured. The optimal temperature corresponds to the “normal” temperatures usually encountered in the body or environment, depending on the type of organism. The purpose of each of the experiments is to determine the optimal temperature for the A. Oryzae, fungal amylase, and B. Lichenformis, within 10 minutes. The questions that will be answered as this experiment takes place are how long will it take for the enzymes to activate in each temperature, at what temperature will the amylases have the most rate of reaction, and which of the wells will turn completely yellow. As a group we hypothesize that the A. Oryzae will be black with the
Enzymes analysis enables scientist to look the what, why, and how of life. A majority of reactions inside to human body are endothermic, without enzymes lowering the activation energy of these reactions life would not be possible. By understanding what the optimum environments of enzymes are, specifically with sucrase, scientist can better understand enzyme kinetics. In the body thousands of enzymes help regulate and produce chemicals. One very important enzyme K-ATPase in the body help catalyze the reaction of ATP into ADP creating a free phosphate group and helping create an sodium and potassium electrochemical gradient in the body (Peluffo et al. 2004). If the body did not keep its temperature, pH, and concentration of substrate at the optimum levels enzymes would not be able to process required energy fully and the cells would start to die. Sucrose is an important aspect of life and its reduction to glucose has to be carefully controlled in photosynthesis. In the photosystem 2 stage of photosynthesis sucrose helps stabilize water so hydrogen's electrons can be taken and used to create energy (Barry and Halverson et al.2003). As the optimum environment for an enzyme is reached the need to accurately and analytically