Given the background, we hypothesized that for the first experiment, the lactase will break down lactose in milk and have a similar effect to sucrose. We also predicted that the Milk + Lactase reactant would have more glucose, the Milk + Water reactant would have a little bit of glucose broken down, the Sucrose + Lactase reactant would have less glucose than the Milk + Water reactant, and the Sucrose + Water reactant would have little to no glucose at all. As for the first procedure of the second experiment, we had hypothesized the more basic the solution would become, then the more glucose there would be. Our prediction for the first procedure of the second experiment was that there would be no glucose found in the solutions containing pH 4 and pH 7. For the second procedure of the second experiment, our hypothesis was that glucose would be present in the reactants at 4ºC and 25ºC while the reactant that had been in the hot water bath at 100ºC would have little to no glucose because it would have evaporated. We predicted that for this temperature experiment, the glucose would evaporate at 100ºC and would remain at 4ºC and 25ºC. For the first experiment we had found that a reactant of Milk + Lactase have high levels of glucose, while the other three reactants do not. As for the second experiment, for the first procedure, amounts of glucose were found in
Effect of pH on Enzyme Activity. 1. Dependent Variable. amount of product (glucose and fructose) produced 2. Independent Variable. pH 3. Controlled Variables. temperature; amount of substrate (sucrose) present; sucrase + sucrose incubation time
These results shown from this experiment led us to conclude that enzymes work best at certain pH rates. For this particular enzyme, pH 7 worked best. When compared to high levels of pH, the lower levels worked better. The wrong level of pH can denature enzymes; therefore finding the right level is essential. The independent variable was the amount of pH, and the dependent being the rate of oxygen. The results are reliable as they are reinforced by the fact that enzymes typically work best at neutral pH
Enzymes are catalysts that function to speed up reactions; for example, the enzyme sucrose speeds up the hydrolysis of sucrose, which breaks down into glucose and fructose. They speed up reactions but are not consumed by the reaction that is taking place. The most important of the enzyme is the shape as it determines which type of reaction the enzyme speeds up. Enzymes work by passing/lowering and energy barrier and in doing so; they need to bind to substrates via the active. Once they do, the reaction speeds up so much more quickly than it would without the enzyme. Coenzymes and cofactors aid the enzyme when it comes to binding with the substrate. They change the shape of the active site so the substrate can bind properly and perform its function.
3. Specifically state where in the intestine sucrase is likely to be most active (pH along GI tract).
What is overall maximal substrate concentration for lactase? Explain why the maximum initial reaction rate cannot be reached at low lactose concentrations.
Enzymes are specific-type proteins that act as a catalyst by lowering the activation energy of a reaction. Each enzyme binds closely to the substrate; this greatly increases the reaction rate of the bounded substrate. Amylase enzyme, just like any other enzyme, has an optimum PH and temperature range in which it is most active, and in which the substrate binds most easily.
The motive of this lab is to attain a better understanding of enzyme activity by timing chemical reactions in certain temperatures and pH levels. Enzymes act as catalysts that help speed up reactions. Without these enzymes chemical reactions in metabolism would be backed up. There are two factors that affect an enzyme’s reaction rate: temperature and pH levels. In this label we will be testing different pH levels and temperatures to see which ones cause the most reactions.
In both experiments, there was one environment that the enzyme worked best it. The graphs show that in the salt experiment 4% salt concentration was the optimum environment for the enzyme, and pH 6 buffer solution was the optimum pH environment for the enzyme. In the other environments the enzyme did not work as fast, therefore not creating as much product. The hypothesis was that the enzyme would work the most efficiently in the most neutral environment. The data does support this hypothesis; therefore we would accept the hypothesis. The neutral state for pH is pH 7, so the enzyme would be most active at exactly pH 7. With pH 6 buffer solution, the enzyme is working, but after pH 7, the enzyme begins to denature at becomes less effective. For the salt experiment, the hypothesis was that the enzyme would be more productive in the solution that had the least salt concentration. As the salt concentration increase, the enzyme would be being to denature. In this experiment, the hypothesis was incorrect, so it had to be
Changes in temperature and pH along with Substrate Concentration and Enzyme Concentration were the conditions tested in the experiment.
Enzymes are a key aspect in our everyday life and are a key to sustaining life. They are biological catalysts that help speed up the rate of reactions. They do this by lowering the activation energy of chemical reactions (Biology Department, 2011).
Organisms cannot depend solely on spontaneous reactions for the production of materials because they occur slowly and are not responsive to the organism's needs (Martineau, Dean, et al, Laboratory Manual, 43). In order to speed up the reaction process, cells use enzymes as biological catalysts. Enzymes are able to speed up the reaction through lowering activation energy. Additionally, enzymes facilitate reactions without being consumed (manual,43). Each enzyme acts on a specific molecule or set of molecules referred to as the enzyme's substrate and the results of this reaction are called products (manual 43). As a result, enzymes promote a reaction so that substrates are converted into products on a faster pace (manual 43). Most enzymes are proteins whose structure is determined by its sequence of its amino acids. Enzymes are designed to function the best under physiological conditions of PH and temperature. Any change of these variables that change the conformation of the enzyme will destroy or enhance enzyme activity(manual, 43).
The purpose of this lab is to examine the specificity of the lactase enzyme to a specific substrate and how it can denature due to the rise in temperature.
The purpose of this experiment was to test and observe the numerous amounts of factors that influence the activity of the enzyme and that can be done by releasing oxygen gas in a fixed condition and change conditions one at a time.
The objective of the lab was to examine the effects of environmental variables on the functions of an enzyme. To the point, an experiment was conducted to test the effect of pH on the function of the enzyme Amylase.