The preparation for the experiment started by gathering the solutions of enzyme Peroxidase, substrate hydrogen peroxide, the indicator guaiacol and distilled water. Two small spectrometer tubes and three large test tubes with numbered labels. In addition, one test tube rack, one pipet pump and a box of kimwipes were also gathered. Before the experiment, the spectrometer must be set up to use by flipping the power switch to on. Following, the machine was warmed up for 10 minutes and the filter lever was moved to the left. In addition, I set the wavelength to 500 nm with the wavelength control knob. Before the experiment, I had to create the blank solution by pipetting 0.1 ml of guaiacol, 1.0 ml of turnip extract and 8.9 ml water into tube #1. Following the creation of the blank, a control 2% solution was created. …show more content…
And finally into test tube 3, I pipetted 1.0 ml turnip extract and 4.0 ml of water. The contents of test tube 1 was poured into a spectrometer tube and labeled it “B” for blank. “B” tube was now inserted it into the spectrometer. An adjustment to the control knob was made to zero the absorbance reading on the spectrometer since one cannot continue the experiment if the spectrometer is not zeroed. A combination of two people and a stop watch was now needed to not only record the time of the reaction, but to mix the reagents in a precise and accurate manner. As my partner recorded the time, I quickly poured tube 3 into tube 2. I then poured tube 2 into the experiment spectrometer tube labeled “E” and inserted it into the spectrometer. A partner then recorded the absorbance reading for every 20 seconds for a total of 120 seconds. After the experiment, a brown color in the tube should be observed to indicate the reaction was carried out. Using sterile techniques, any excess liquid left was disposed
Horseradish peroxidase Type 1 was used in this laboratory experiment, it was an enzyme that helped catalyze the oxidative coupling of vanillin to produce divanillin. The role of the enzyme is to increase the rate of the overall chemical reaction to reduce reaction time, therefore making the reaction process faster. The Horseradish peroxidase Type 1 achieved this by decreasing the activation energy required for a chemical to react, thus allowing the reaction to process through a lower activation energy, which increases the reaction rate and makes the reaction faster.
In this experiment, the naturally occurring peroxidase is extracted from homogenized turnip (Brassica rapa) pulp (Coleman 2016). Its role in the environment is to remove toxic hydrogen peroxide during metabolic processes where oxygen is used (Coleman 2016). The goal of this experiment is to evaluate the change of absorbency of turnip peroxidase within a metabolic reaction utilizing oxygen. Any change noted is indicative of the peroxidase removing hydrogen peroxide. Within this experiment, the extract will be prepared, the amount of enzyme will be standardized, and the effect of changing the optimal conditions will be observed. If the enzyme concentration is increased then the rate of the reaction decrease. If the pH of solutions used is increased
The data in proves that our hypothesis was correct. When we increased the temperature to 35°C, the the enzyme activity increased because kinetic energy increased, increasing the collisions between the substrate and the enzyme, and thus creating a higher chance of reaction. When we increased the temperature to 45°C, the enzyme activity decreased as the enzyme became denatured,because the atoms in the enzyme had enough energy to overcome the hydrogen bonds between the R groups that give the enzyme its shape From our data, we could conclude that the optimal temperature of turnip peroxidase is around 35°C and around 45°C, it will start to denature.
The type of peroxidase is used is called turnip peroxidase. Turnip peroxidase is made up of Guaiacol and hydrogen peroxide. The reactants to the product are turnip peroxidase or called tertraguaiacol and water. The color of the react is brown. In the experiment was conducted there were baseline experiment, temperature, pH, 10X substrate, Inhibitor, and half the amount of enzyme.
Peroxidase is an enzyme found in potatoes that catalyzes the breakdown of hydrogen peroxide, H2O2, into O2 gas and water. We examined the different pH environments that can affect the enzyme activity during the breakdown of H2O2. In order to do this, we added different levels of pH, low, medium, and high, into different test tubes with the enzyme and H2O2, and we then inverted the tube. The amount of O2 gas produced was then measured and recorded. The result was that the higher pH produced more gas, followed by medium pH, then low pH. The enzymes were more active in the pH of about 10. It increased
One of the best-studied peroxidases is horseradish peroxidase (HRP), which has a heme-iron co-factor. In most heme-peroxidases the iron atom in the active center undergoes a reversible change of its oxidation state. The reaction proceeds in three distinct steps. In first step, the resting state high-spin Fe(III) is present, which is oxidized by hydrogen peroxide to form an unstable intermediate called compound I (Co-I) with Fe(IV), releasing water in the process. Compound I is not a classical enzyme–substrate complex, but rather a reactive intermediate with a higher formal oxidation state (5 compared with 3 for the resting enzyme). Thus, compound I is capable of oxidizing a range of reducing substrates. This reactive intermediate oxidizes
Turnips and horse radish roots are rich source of this enzyme. In this experiment, we would carry out a reaction between hydrogen peroxide and guaiacol which is colorless dye, using peroxidase as a catalyst, to produce water and an oxidized form of guaiacol which is brown. The formation of brown color would serve as an indicator that the breakdown of Hydrogen Peroxide took place. The enzyme activity would be directly proportional to the brown color intensity. The color intensity would be measured using a spectrophotometer and standardized to find the corresponding concentration for each absorbance unit.
The purpose of this experiment is to learn the effects of a certain enzyme (Peroxidase) concentration, to figure out the temperature and pH effects on Peroxidase activity and the effect of an inhibitor. The procedure includes using pH5, H202, Enzyme Extract, and Guaiacol and calibrating a spectrophotometer to determine the effect of enzyme concentration. As the experiment continues, the same reagents are used with the spectrophotometer to determine the temperature and pH effects on Peroxidase activity. Lastly, to determine the effect of an inhibitor on Peroxidase, an inhibitor is added to the extract. It was found that an increase in enzyme concentration also caused an increase in the reaction rate. The reaction rate of peroxidase increases at 40oC. Peroxidase performed the best under pH5 and declined as it became more basic. The inhibitor (Hydroxy-lamine) caused a decline in the reaction rate. The significance of this experiment is to find the optimal living conditions for Peroxidase. This enzyme is vital because it gets rid of hydrogen peroxide, which is toxic to living environments.
The name of the enzyme used in this lab is called peroxidase. “In plants the enzyme is called peroxidase. A related enzyme named catalase performs the same function in animals” (Pearce, 2017). These enzymes breakdown hydrogen peroxide (which is a by – product of metabolism).
After the substrate solution was added, five drops of the enzyme were quickly placed in tubes 3, 4 and 5. There were no drops of enzyme added in tubes 1 and 2 and in tube 6 ten drops were added. Once the enzyme solution has been added the tubes were then left to incubate for ten minutes and after five drops of DNSA solution were added to tubes 1 to 6. The tubes were then placed in a hot block at 80-90oC for five minutes. They were then taken out after the five minute period and using a 5 ml pipette, 5 ml of distilled water were added to the 6 tubes and mixed by inversion. Once everything was complete the 6 tubes were then taken to the Milton Roy Company Spectronic 21 and the absorbance of each tube was tested.
The same solution of 0.5 ml BSA was then added from test tube 1 to the test tube 2 after being properly mixed, and from test tube 2 the solution was being added to test tube 3, and so forth all the way up to test tube 5, with the same exact procedure. From the last tube, we then disposed the 0.5 ml solution. After above procedures, we now labeled another test tube “blank”; 0.5 ml blank distilled water was purred into the tube with the serial dilution of 1:10. We also had a tube C labeled “unknown” with the same 0.5 ml of solution. And after adding 5ml of Coomassie Blue to each tube (1-5) and to the blank, the result of absorbance was read at 595 nm.
The first experiment begun by filling a 600-ml beaker, almost to the top, with water. Next, a 10-ml graduated cylinder was filled to the top with water. Once water was added to the beaker and graduated cylinder, a thumb was placed over the top of the graduated cylinder. This would ensure that no water was let out and no bubbles were let into the graduated cylinder. Next, it was turned upside down and fully submerged into the beaker. Then, a U-shaped glass tube was attained. The short end of the glass tube was placed into the beaker with the tip inside of the graduated cylinder. Next, a 50-ml Erlenmeyer flask was received. After, 10-ml of substrate concentration and 10-ml of catalase/buffer solution were placed into the flask. A rubber stopper was then placed on the opening of the flask. After adding these, the flask was held at the neck and spun softly
Hydrogen peroxide is a toxic byproduct of cellular functions. To maintain hydrogen peroxide levels the catalase enzyme deconstructs hydrogen peroxide and reconstructs the reactants into oxygen gas and water. The catalase enzyme is found inside cells of most plants and animals. Regulating the levels of hydrogen peroxide is crucial in homeostasis and analyzing it’s optimal conditions for performance is just as important. To understand the optimal environment for this enzyme, they are put into different environments based off protein activity (enzymes are proteins). Catalase samples will be put into different hydrogen peroxide environments based off pH and temperature. The more active the enzyme, the more oxygen and water it will produce. Enzyme activity can be seen through the release of oxygen in the hydrogen peroxide. Since oxygen cannot be accurately measured, the data will consist of the longevity of the reaction in different environments. If the pH is higher than 7, then the reaction rate will increase due to the ample amount of hydrogen ions in the hydrogen peroxide. However the pH level cannot be higher than 10 or else there will be too many hydrogen atoms in the peroxide for the enzyme to be able to deconstruct them. If the temperature is increased, then the reaction rate will increase due to the ample amount of energy and movement in the hydrogen peroxide and enzyme.
The experiment that the class worked on was about peroxidase. Peroxidase is part of the enzyme group that presents most living organisms (Ahmed, 2013). Peroxidase interferes with the removal of hydrogen peroxide (Ahmed, 2013). Hydrogen peroxide is a toxic product that have normal metabolism before it causes any cell damages (Ahmed, 2013). Peroxidase has two substrate and both of them must present a reaction (Ahmed, 2013). One of the two substrate is H2O2 and other one just depends on the organism or the cell type (Ahmed, 2013). The substrate that the class uses is turnip extract. In the class there were five experiments to do but the class were assigned into groups and each group were going to do two experiment. The names of the experiments are: Baseline, Temperature, and pH.
waxed and then rehydrated through descending graded ethanol series down to distilled water. To block the endogenous peroxidase, the rehydrated sections were treated with 6% hydrogen peroxide for 10 min. For epitope retrieval, sections were microwaved in citrate buffer, pH 6 for a total 20 min. Non-specific staining had been blocked by superblock (UV block) for 10 minute.