Temperature controls the speed the enzymes work at. Higher temperatures increase the kinetic energy which increases the chance of collision therefore speeding up the rate of
During these experimental procedures, the implication of multiple different temperatures on fungal and bacterial amylase was studied. In order to conduct this experiment, there were four different temperatures used. The four temperatures used were the following: 0 degrees Celsius, 25 degrees Celsius, 55 degrees Celsius, and 80 degrees Celsius - Each temperature for one fungal and one bacterial amylase. Drops of iodine were then placed in order to measure the effectiveness of the enzyme. This method is produced as the starch test. The enzyme was tested over the course of ten minutes to determine if starch hydrolysis stemmed. An effective enzyme would indicate a color variation between blue/black to a more yellowish color towards the end of the time intervals, whereas a not so effective enzyme would produce little to no change in color variation. According to the experiment, both the fungal amylase and bacterial amylase exhibited a optimal temperature. This was discovered by observing during which temperature and time period produced a yellow-like color the quickest. Amylase shared a similar optimal temperature of 55 degrees Celsius. Most of the amylases underwent changes at different points, but some enzymes displayed no effectiveness at all. Both amylases displayed this inactivity at 0 degrees Celsius. At 80 Celsius both the enzymes became denatured due to the high temperatures. In culmination, both fungal and bacterial amylase presented a array of change during it’s
Amylase Laboratory Report Introduction: In this lab our group observed the role of pancreatic amylase in the digestion of starch and the optimum temperature and pH that affects this enzyme. Enzymes are located inside of cells that increase the rate of a chemical reaction (Cooper, 2000). Most enzymes function in a narrow range of pH between 5 through 9 (Won-Park, Zipp, 2000). The temperature for which enzymes can function is limited as well ranging from 0 degrees Celsius (melting point) to 100 degrees Celsius (boiling point)(Won-Park, Zipp, 2000). When the temperature varies in range it can affect the enzyme either by affecting the constant of the reaction rate or by thermal denturization of the particular enzyme (Won-Park, Zipp, 2000). In this lab in particular the enzyme, which was of concern, was pancreatic amylase. This type of amylase comes from and is secreted from the pancreas to digest starch to break it down into a more simple form called maltose. Maltose is a disaccharide composed of two monosaccharides of glucose. The presence of glucose in our experiment can be identified by Benedicts solution, which shows that the reducing of sugars has taken place. If positive the solution will turn into a murky reddish color, where if it is negative it will stay clear in our reaction. We can also test if no reduction of sugars takes place by an iodine test. If starch is present the test will show a dark black color (Ophardt, 2003).
The purpose of this experiment was to determine (1) the reaction rate of an amylase enzyme in starch and (2) the environmental factors that can affect the enzymatic activity. The hypothesis, in relation to the enzymatic activity by variables such as the substrate concentrations, temperature, PH and chemical interactions on the rate of reaction, stated
amylase enzyme and the optimal temperature for fungal and bacterial amylase. In order to make
How does temperature affect the rate of reaction for Lipase? As the temperature increases, so will the rate of enzyme reaction. However, as the temperature exceeds the optimum the rate of reaction will decrease.
Lisabeth Castellanos October 25, 2017 Enzyme lab report Daniel Flores An enzyme also known as a protein, is a biological catalyst which speeds up chemical reactions by lowering the activation energy to increase the rate in which the reaction occurs. The enzyme used was amylase, which breaks down starch molecules into maltose. PH, substrate concentration, salt concentration, and temperature. When enzymes reach a low temperature, the activity is slowed down of molecule movement, but the enzyme is not destroyed. Once enzymes are placed in optimal temperatures once again, it will restore its activity to a normal rate. When enzymes reach too high above optimal temperature, the enzyme is denatured and cannot be restored. In the experiment performed the activity of breaking down starch in fungal and bacterial amylase was being tested at a range of temperatures and time. The fungal and bacterial amylase work best at optimal temperature. Amylase will function best at sixty degrees Celsius at 10 minutes when starch had been one hundred percent hydrolyzed. Hydrolyzed is the breakdown of molecules through addition of water. The experiments independent variables were the time, temperature and enzyme used. The dependent variable was the enzyme activity that broke down the starch into maltose. The controlled variables were the temperature baths, the iodine drop amount, the mixture drop amount, and location of experiment. The control group was the zero minutes without amylase at
Part b: These results show how temperature of extreme high, or low affects enzyme activity. The highest rate of enzyme activity occurred at 37 Cº. Anything that was hotter or cold than 37 Cº slowed the reaction rate. As I thought, 100 degrees would denature the enzyme, and that was the case. The data provided shows exactly what temperatures enzymes work best, and worst. The objective was achieved as we discovered the different reaction rates under different temperatures. The results are reliable, as we know enzymes do not work well when under extreme heat or denaturation occurs. What I learned in this experiment was that enzymes don’t work well under cold temperatures because they tend to move slower. My hypothesis did not quite match, because I thought they work best at lower temperatures.
Maryely Ramirez Professor Theresa Sterner Bio Lab 105 04 November 2013 The Effects Environmental Temperature and pH have on the Activity of Porcine Pancreatic Amylase Introduction There are many types of enzymes and each has a specific job. Enzymes are particular types of proteins that help to speed up some reactions, such as reactants going to products. One of them is the amylase enzyme. Amylases are found in saliva, and pancreatic secretions of the small intestine. The function of amylase is to break down big molecules of starch into small molecules like glucose; this process is called hydrolysis. Enzymes are very specific; for example, amylase is the only enzyme that will break down starch. It is similar to the theory of the lock
Catalase Enzyme Lab Introduction The human body is an incredible system that is capable of working a multitude of diverse functions. Without the help of the many different protein molecules, the human body would not be able to function properly. One major
BIO 211 Lab Section 11 February 15, 2012 Effects of Temperature on Enzymatic Activity Abstract Temperature is a measure of kinetic energy. As this movement increases, collision rate and intensity, and therefore reaction rates, increase. This experiment was conducted to determine if there is a minimum temperature that increase kinetic energy and denature enzymes to slow enzymatic reactions or fail to catalyze them. The experimental results indicate an increase in temperature will increase reaction rates until proteins denature.
Bacterial amylases operate at higher temperatures than do fungal amylases. Fungal amylases react rapidly at lower temperatures; fungal amylases are used as an agent for alcohol fermentation for grain (Underkofler et al, 1958). Fungal amylases is said to be denatured – change shape (Alberte et al, 2012), at high temperatures above 60° C and bacterial amylases on the other hand are stable and show little denaturing at temperatures up to 85°C 3 The question answered by the experiment is if the temperature is not within the range of the enzymes (fungal and bacterial amylase) optimal temperature (higher temperature) then will the enzymes denature and if the enzymes are placed in lower temperature from optimal the activity then will it slow down enough to stop all reaction, meaning each enzyme will not be operating efficiently. Knowing about a bacterial amylases and fungal amylases optimal temperatures are important for knowing which food products and industrial products it can be used on to conserve the product because then the producer knows about which products it can be incorporated into depending on the temperature it is manufactured at.
The effects of temperature on Aspergillus oryzae and , Bacillus licheniformis Tamira Carey PID: 4861587 Lab partners: Group 4 Lab Section: U29 ABSTRACT The effects of temperature on fungal amylase Aspergillus oryzae, and bacterial amylase, Bacillus licheniformis ability to break down starch into maltose was studied. The study determined the optimal temperature the Aspergillus oryzae and Bacillus licheniformis was able to break down the fastest. The starch catalysis was monitored by an Iodine test, a substance that turns blue-black in the presence of starch. Amylase catabolizes starch polymers into smaller subunits. Most organisms use the saccharide as a food source and to store energy (Lab Manual, 51). The test tubes were labeled with a different temperature (0°C, 25°C, 55°C, 85°C). Each test tube was placed in its respective water baths for five minutes. After the equilibration process, starch was placed in the first row of the first row of the spot plate. Iodine was then added to the row revealing a blue black color. The starch was then added to the amylase. After every two minute section a pipette was used to transfer the starch-amylase solution to place three drops of the solution into the spot plate row under the corresponding temperature. Iodine drops was placed in the row. Color changes were noted and recorded. The results showed Aspergillus oryzae was found to have an optimal temperature between 25°C and 55°C and Bacillus licheniformis was found to have an
reaction rate increases. If the temperature of an enzyme gets to high the reaction rate will slow
To find the effect of temperature on the activity of an enzyme, the experiment deals with the steps as follows. First, 3 mL if pH 7 phosphate buffer was used to fill three different test tubes that were labeled 10, 24, and 50. These three test tubes were set in three different temperature settings. The first test tube was placed in an ice-water bath for ten minutes until it reached a temperature of 2° C or less. The second tube’s temperature setting was at room temperature until a temperature of 21°C was reached. The third tube was placed in a beaker of warm-water until the contents of the beaker reached a temperature setting of 60° C. There were four more test tubes that were included in the procedure. Two of the test tubes contained potato juice were one was put in ice and the other was placed in warm-water. The other two test tubes contained catechol. One test tube was put in ice and the other in warm water. After