Ethyl ethanoate: Ethyl ethanoate is an ester. Esters are group of organic compounds which have a functional group of –COO-. Esters are liquids that become vapours quickly so they are present in perfumes.
Grignard reagents are reactive enough to also attach esters; however, two equivalents of the Grignard reagent are usually added because less then two equivalents leave a large quantity of unreactive ester. This reaction forms a tertiary alcohol.
The purpose of this experiment is to prepare isopentyl acetate by direct esterification of acetic acid with isopentyl alcohol. After refluxing there is an isolation procedure where excess acetic acid and remaining isopentyl alcohol are easily removed by extraction with sodium bicarbonate and water. The ester is then purified by simple distillation and the IR is then obtained.
The limiting reagent for this esterification reaction is isopentyl alcohol. It yields the least amount of isopentyl acetate in this reaction, and therefore is the limiting reagent.
The goal of this experiment was to synthesize aspirin. In this experiment aspirin, also known as acetylsalicylic acid, was synthesized from salicylic acid and acetic anhydride. In the reaction the hydroxyl group on the benzene ring in salicylic acid reacted with acetic anhydride to form an ester functional group. This method of forming acetylsalicylic acid is an esterification reaction. Since this esterification reaction is not spontaneous, sulfuric acid was used as a catalyst to initiate the reaction. After the reaction was complete some unreacted acetic anhydride and salicylic acid was still be present in the solution as well as some sulfuric acid, aspirin, and acetic acid. Crystallization, which uses the principle of
This reaction is spontaneous for almost all esters but can be very slow under typical conditions of temperature and pressure. The reaction occurs at a much faster rate if there is a significant amount of base (OH-) in the solution. In this lab experiment, the rate of this reaction will be studied using an ester called para-nitrophenyl acetate (PNA), which produces an alcohol,
In this experiment, the Fischer Esterification of an unknown acid and an unknown alcohol was used to prepare an unknown ester. Sulfuric acid was used as a catalyst in the reaction which then was put under reflux. After cooling, the pH of the solution was raised to approximately 8 using sodium carbonate. Diethyl ether was added, then the aqueous layer was removed and the organic layer was washed with sodium chloride. The aqueous layer was removed again and sodium sulfate was added. The unknown product was then identified using gas chromatography (GC) to obtain the retention time.
After reviewing the basics of enzymes and catalysis, we take a dive into the wonderful
Is A+C a chemical reaction? Yes, because of serval chemical changes happening to the solution before and after. I came to this conclusion by using three pieces of evidence. The three pieces of evidence were a ph imbalance, a dramatic density rise, and a change in electroconductivity.
In this experiment, an unknown alcohol underwent a Fischer Esterification reaction by reacting it with acetic acid as well as sulfuric acid catalyst. The unknown product material was purified through distillation and characterized by analyzing an IR spectrum and determining the density of the product. In addition, the boiling point test was performed to test for an ester. Lastly, the starting material, an unknown alcohol, was determined after finding out the product and examining the IR spectrum for the reactant.
Objective: Measure the rate of decomposition of hydrogen peroxide with and without the addition of an enzyme catalase at different time intervals.
Mechanism: Key features of the Fischer Esterification mechanism are: a. protonation of the carbonyl group, b. the
An ester was synthesized during an organic reaction and identified by IR spectroscopy and boiling point. Acetic acid was added to 4-methyl-2-pentanol, which was catalyzed by sulfuric acid. This produced the desired ester and water. After the ester was isolated a percent yield of 55.1% was calculated from the 0.872 g of ester recovered. This quantitative error was most likely due to product getting stuck in the apparatus. The boiling point of the ester was 143° C, only one degree off from the theoretical boiling point of the ester 1,3-dimethylbutyl, 144 ° C. The values of the
The purpose of this lab was to synthesize the ester isopentyl acetate via an acid catalyzed esterification (Fischer Esterification) of acetic acid with isopentyl alcohol. Emil Fischer and Arthur Speier were the pioneers of this reaction referred to as Fischer Esterification. The reaction is characterized by the combining of an alcohol and an acid (with an acid catalyst) to yield and ester plus water. In order to accomplish the reaction, the reactants were
In this experiment, a Fischer Esterification reaction was performed with two unknown compounds. The unknown compounds, Acid 2 and Alcohol D, were identified by using the knowledge of the reaction that took place, and the identity of the product that was synthesized. The identification of the product resulted from analysis of IR and NMR spectra.