Lastly, the seasonal changes could affect photosynthesis. For example, if it gets too cold, the rate of photosynthesis will decrease. Proteins are folded into a very particular shape, and this allows them to bind efficiently to the molecules of interest. At low temperatures, between 32 and 50 degrees Fahrenheit – 0 and 10 degrees Celsius – the enzymes that carry out photosynthesis do not work efficiently, and this decreases the photosynthetic rate. Also, at medium temperatures, between 50 and 68 degrees Fahrenheit, or 10 and 20 degrees Celsius, the photosynthetic enzymes work at their optimum levels, so photosynthesis rates gauge high. Farther more, at temperatures above 68 degrees Fahrenheit, or 20 degrees Celsius, the rate of photosynthesis
Temperature influences the distribution of plants and this is another abiotic factor. In the Lions club tower I could feel the difference in temperature. Bottom at being cold and moist whereas the top is warm and dry. This is shown clearly on the average table. Temperatures such as snow or frost determines the distribution of plants as most plants cannot prevent freezing because of their tissues and this abiotic factor affects the plantae group. Other effects that could cause an establishment to particular plants due to temperature is the gemination of biennial plants, and this is during spring or summer known as vernalization. This is the cooling of seed in order to quickly adapt to the environment and the abiotic factors. As of the forest
Light intensity does affect the rate of photosynthesis. Too much light may cause plants to "burn out" or stop producing oxygen while too little light will not provide enough light for optimal photosynthesis activity and CO2 would stop be taken in and oxygen would stop being produced.
like slightly lower vegetative temps. but not LOW. The range of temps in my home, have grown mexicana, tampanensis, cubensis, and the Cops. Any subtropical shroom will produce in a relatively broad range of temps.
Plant- Different species plants have different photosynthetic rates due to the different leaf structures of the plants. Even plants of the same species may have slightly different rates of photosynthesis since there may be more or less chlorophyll in the leaves to absorb light. The size of the plant is also important since this would affect the amount of surface area for gas exchange.
This experiment demonstrates the effects of pH on the rate of photosynthesis by examining the behavior of leaf disks in different pH solutions under light. In this experiment, we used five different pH levels: pH 5, pH 6, pH 7, pH 8 and pH 9. These solutions were created using a combination of hydrochloric acid and sodium hydroxide. Spinancia olcerea or spinach, leaves were used in the experiment to examine the effects of pH on the rate of photosynthesis. The rate of photosynthesis was measured by counting the number of leaf disks that rose to the surface of the solution after each minute. In acidic solutions, the rate of photosynthesis increased while in basic solutions, the rate of photosynthesis decreased.
Temperature controls the speed the enzymes work at. Higher temperatures increase the kinetic energy which increases the chance of collision therefore speeding up the rate of
Claim: What affects the rate of photosynthesis is the amount and type of light source that is provided. If you were to have more light than the process of photosynthesis will occur faster than if the light source was not a lot and dim.
This lab was called photosynthesis: understanding photosynthesis. It is a highly complex process that needs to be broken down in many steps to understand how it works. This lab covers the big components in photosynthesis including carbon dioxide intake, light consumption, and varying pigmentation.
Photosynthesis is the conversion of light energy to chemical energy into sugars. It is the process in plants that uses carbon dioxide, water, and sunlight from its surroundings and releases oxygen as a byproduct (6H2O+6CO2+light energy -> C6H12O6+6O2). Photosynthesis is required for plants because they are autotrophs, organisms that make their own food. Plants require a specific environment that is ideal to them to be able to carry out the process. Environmental conditions can either increase or decrease the rate of photosynthesis. Things like colors of light, pH, and temperature can all affect the rate of photosynthesis in plants.
for photosynthesis to occur. Algae and other aquatic plants thrive in this zone; there is
However, the photosynthetic process can be affected by different environmental factors. In the following experiment, we tested the effects that the light intensity, light wavelength and pigment had on photosynthesis. The action spectrum of photosynthesis shows which wavelength of light is the most effective using only one line. The absorption spectrum plots how much light is absorbed at different wavelengths by one or more different pigment types. Organisms have different optimal functional ranges, so it is for our benefit to discover the conditions that this process works best. If the environmental conditions of light intensity, light wavelength and pigment type are changed, then the rate of photosynthesis will increase with average light intensity and under the wavelengths of white light which will correspond to the absorption spectrum of the pigments. The null hypothesis to this would be; if the environmental conditions light intensity, light wavelength and pigment type are changed, then the rate of photosynthesis will decrease with average light intensity and under the white light which will correspond to the absorption spectrum of the pigments.
At low temperatures (5oC-15oC) the rate of photosynthesis will be slow, as the enzymes of the plant do not have enough energy to meet substrate molecules. However, as the temperature increases, there will be a greater rate of photosynthesis, especially as the enzymes approach the optimal temperature. Although once the increase in temperature has gone past the optimal temperature, enzymes will begin to denature and the rate will decrease until there is little or no oxygen being produced by
Introduction: Photosynthesis can be defined as a solar powered process that removes atmospheric carbon dioxide and transforms it into oxygen and carbohydrates (Harris-Haller 2014). Photosynthesis can be considered to be the most important biochemical process on Earth because it helps plants to grow its roots, leaves, and fruits, and plants serve as autotrophs which are crucial to the food chain on earth. Several factors determine the process of photosynthesis. Light is one these factors and is the main subject of this experiment. The intensity of light is a property of light that is important for photosynthesis to occur. Brighter light causes more light to touch the surface of the plant which increases the rate of photosynthesis (Speer 1997). This is why there is a tendency of higher rates of photosynthesis in climates with a lot of sunlight than areas that primarily do not get as much sunlight. Light wavelength is also a property of
Without photosynthesis we would not be able to receive energy. We should be more appreciate of plants, without them we would not survive. This paper will explain the basic components require for photosynthesis, the role of chlorophyll, how energy is transferred, and photosystems I and II and the most precious product results of photosynthesis.
Photosynthesis is a biochemical process in which plant, algae, and some bacteria harness the energy of light to produce food. Nearly all living things depend on energy produced from photosynthesis for their nourishment, making it vital to life on Earth. It is also responsible for producing the oxygen that makes up a large portion of the Earth¡¦s atmosphere. Factors that affect photosynthesis are light intensity and wave length, carbon dioxide concentration, and temperature.