# Flight of the Frisbee

1478 Words6 Pages
Abstract Spinning objects such as Frisbees possess unique flying characteristics. They are in essence spinning wings gliding in mid-air propelled by the forces of torque and aerodynamic lift. The relationship between Newton's Laws of Motion and the flight of the Frisbee will be discussed. This paper will attempt to highlight and show the different physical motions involved behind the spinning edge of the Frisbee and the similar forces it shares with other heavier winged objects. Lastly, how major improvements in the redesign of the Frisbee contributed to its increased stability and precision in its flight in the air. The Flight of the Frisbee Objects that fly are designed to push air down. The momentum of the air going…show more content…
As stated by Professor Bloomfield (1999), "Rotation is crucial. Without it, even an upright Frisbee would flutter and tumble like a falling leaf, because the aerodynamic forces aren't perfectly centered" (p. 132). There are two major external forces acting against the flying Frisbee. To sustain flight in the air, the Frisbee must retain sufficient torque or twist to overcome firstly, the inertia of its body and secondly, the viscous friction of the air. The relative importance of these forces is largely influenced by the size and the mass distribution on the Frisbee itself. For instance, the weight or gravitational force, which is a negative force pulling the disk downward, works directly against the forces of lift and thrust. The force of gravity, or Earth's downward pull on the Frisbee, pulls the disk back to Earth after it is released and spun in the air. According to Newton's Law of Universal Gravitation, the amount of gravitational force between objects depends on their mass, and the amount of matter an object contains. The smaller an object's mass, the smaller its gravitational pull. "A spinning Frisbee, though, can maintain its orientation for a long time because it has angular momentum, which dramatically changes the way it responds to aerodynamic twists, or torques" (Bloomfield, 1999, p. 132). The second negative force acting on the Frisbee is the drag or air resistance. As mentioned by Bloomfield (1999), air flows "like all viscous fluids" (p.