The purpose of this experiment is to prepare a Grignard reagent by reacting with alkyl or aryl halide and to ultimately react the Grignard reagent with carbon dioxide in order to produce carboxylate. The formed carboxylate is then protonated with an acid to produce carboxylic acid that could be used with liquid-liquid extraction to isolate the unknown acid from the other products from side reactions. The final unknown product is identified by measuring the melting point and calculating the molecular weight obtained from titration.
Organometallic compounds are compounds that contain carbon-metal bonds (C-M bonds), in which carbon bears a partial negative charge because metal is less electronegative than the carbon. This partial negative charge of the carbon atom allows it to be a good nucleophile that attacks the electrophile to make a new carbon-carbon bond. There are several examples of organometallic compounds, such as organolithium, Gilman reagents, and Grignard reagents (organomagnesium reagent). In this experiment, Grignard reagents are prepared and reacted with other electrophilic carbon to form a new carbon-carbon bond. Victor Grignard discovered Grignard reagent around 1890s and received a Noble Prize in 1912 with his discoveries. In this experiment, an alkyl halide or aryl halide is reacted with magnesium metal to prepare a Grignard reagent (R-MgX). In this Grignard reagent preparation reaction, halide is typically used with bromine (sometimes with chlorine, not
In part A, the Grignard reagent was created. Mg is added between the benzene ring and the bromine by means of a non-chain radical reaction. Initially, Mg donates and electron to bromide and heterolytically breaks the C-Br bond; therefore, this results in a carbon radical, Br - ion, and a Mg+ radical. Next, the carbon radical and the Mg+ radical bond together, and the Mg and Br - ionically bond together2. In the experiment, no initial color change to cloudy gray was observed. Eventually, it was decided to try and
A Grignard reagent is a type of organometallic, which consists of a bond between a metal and a carbon. There are three types of carbon-metal bonds: ionic, polar covalent, and
A chemical reaction is when substances (reactants) change into other substances (products). The five general types of chemical reactions are synthesis (also known as direct combination), decomposition, single replacement (also known as single displacement), double replacement (also known as double displacement), and combustion. In this lab, the five general types of chemical reactions were conducted and observations were taken before, during, and after the reaction. Then the reactants and observations were used to determine the products to form a balanced chemical equation. The purpose of this lab was to learn and answer the question: How can observations be used to determine the identity of substances produced in a chemical reaction?
For this experiment, an organometallic reagent was used for the synthesis and isolation of benzoic acid. The Grignard reaction is the addition reaction of an organometallic reagent, which in this case was an organomagnesium reagent. An organometallic reagent is a carbon bonded to a metal. This reagent was combined with an electrophile, a carbonyl compound such as a ketone or aldehyde. Carbons are electrophilic when bound to a nonmetal thus the atoms are more electronegative than the carbon and metals are less electronegative than carbon.
In this experiment, the goal is to prepare a Grignard reagent from an unknown aryl halide and identify the identity of the aryl halide by converting it to a carboxylic acid to determine its melting point and molar mass (determined by titration). The experiment began by dissolving 0.25g of magnesium powder in a 25mL round-bottom with 5mL of anhydrous ether and stirring with a stir bar. Then the round-bottom flask was set up for reflux using a Claisen adapter where the vertical part is covered with a septum to prevent air from mixed with the solution. The septum is very important because the Grignard product can react with oxygen to produces a carboxylic acid, which is not wanted. Also, the choice of anhydrous solvent is important because the Grignard product can react with water to produce an alkane. With the reflux set up, the next step was to add the halide. 1.2mL of the unknown bromoarene mixed with 2.5mL ether was slowly added dropwise through the septum using the needle and syringe. The bromoarene had to be added slowly because there Grignard product would undergo another unwanted side reaction by reacting with the unknown bromoarene. The product with be a new carbon-carbon bond between the unknown bromoarene and the Grignard product. If the bromoarene is added slowly, the chances of the Grignard product reacting with the bromoarene over the magnesium is low because magnesium exists in larger concentration in the solution. Once all the unknown bromoarene
Abstract: One mixture of two unknown liquid compounds and one mixture of two unknown solid compounds were separated, isolated, purified, and characterized by boiling point. Two liquid unknowns were separated, isolated, and purified via simple distillation. Then, the process of an acid-base extraction and washing were used to separate two unknown compounds into two crude compounds: an organic acid and a neutral organic compound. Each crude compound was purified by recrystallization, resulting in a carboxylic acid (RCO2H) and a pure organic compound (RZ). The resulting mass of the pure carboxylic acid was 1.688g with a percent recovery of 31.80%, the boiling range was 244-245 °C, and its density was 2.0879g/mL. The resulting mass of the pure organic solid was 2.4902g with a percent recovery of 46.91%, the boiling range was 52.0-53.4°C, and its density was 1.5956 g/mL.
Hydrogens, alkyls, or aryls bonded to carboxyl groups—made up of a carbonyl group and a hydroxyl group—are known as carboxylic acids. Derivatives of carboxylic acids include acid chlorides, esters, anhydrides, amides, and generally nitriles. These derivatives are formed by the replacement of the hydroxyl group with a different electronegative heteroatom substituent, which can be a single atom, such as a chlorine atom, or a group of atoms, such as in the formation of
After 10 minutes the reaction liquid was separated from the solid using a vacuum filtration system and toluene. The product was stored and dried until week 2 of the experiment. The product was weighed to be 0.31 g. Percent yield was calculated to be 38.75%. IR spectra data was conducted for the two starting materials and of the product. Melting point determination was performed on the product and proton NMR spectrum was given. The IR spectrum revealed peaks at 1720 cm-1, which indicated the presence of a lactone group, and 1730 cm-1, representing a functional group of a carboxylic acid (C=O), and 3300cm-1, indicating the presence of an alcohol group (O-H). All three peaks correspond with the desired product. A second TLC using the same mobile and stationary phase as the first was performed and revealed Rf Values of 0.17 and 0.43for the product. The first value was unique to the product indicating that the Diels-Alder reaction was successful. The other Rf value of 0.43 matched that of maleic anhydride indicating some
The oxidation number of an atom of any free element is ZERO. Means to say there is only one kind of atom present, no charge.
When looking over my results, I found that the pH level increased from a neutral pH to a basic level of pH. The Miracle- Gro fertilizer that I used is supposed to have a pH of 7. This surprised me because I would think that adding a 10% fertilizer solution would make the water acidic. I thought that the fertilizer would be more acidic because when we learned about rivers, we found out that acid rain decreased the dissolved oxygen levels; also, Eutriporication results in low dissolved oxygen levels. Therefore I believed that the fertilizer would be acidic because of my background knowledge of dissolved oxygen in water. Regardless, the basic water killed the algae, elodea plant and the snails in the water. I also thought that eutrophication would occur in the water when
Objective: The objective of this experiment is to use acid-base extraction techniques to separate a mixture of organic compounds based on acidity and/or basicity. After the three compounds are separated we will recover them into their salt forms and then purify them by recrystallization and identify them by their melting points.
The Grignard reaction is an important synthetic process by which a new carbon to carbon bond is formed. Magnesium metal is first reacted with an organic halide forming the Grignard reagent. The Grignard reaction is the addition of an organomagnesium halide (Grignard reagent) to a ketone or aldehyde, to form a tertiary or secondary alcohol, respectively. For example, the reaction with formaldehyde leads to a primary alcohol. Grignard Reagents are also used in the following important reactions: The addition of an excess of a Grignard reagent to an ester or lactone gives a tertiary alcohol in which two alkyl groups are the same, and the addition of a
Through the use of the Grignard reaction, a carbon-carbon bond was formed, thereby resulting in the formation of triphenylmethanol from phenyl magnesium bromide and benzophenone. A recrystallization was performed to purify the Grignard product by dissolving the product in methanol. From here, a melting point range of 147.0 °C to 150.8 °C was obtained. The purified product yielded an IR spectrum with major peaks of 3471.82 cm-1, 3060.90 cm-1, 1597.38 cm-1, and 1489.64 cm-1, which helped to testify whether the identity of the product matched the expected triphenylmethanol. The identity of the product being correct was further confirmed by way of both proton and carbon-13 NMR spectra. This is due to the fact
After the initial mixture has refluxed, 9.11 grams of benzophenone was dissolved in 100 mL of anhydrous ether in a beaker and was then transferred into the separatory on the reflux apparatus. This solution was then added to the Grignard reagent at a drop wise rate while stirring. After the benzophenone was added, the mixture was then refluxed for 15 minutes on a heating mantle.
Dispense .5 mL water into the already weighed conical vial, replace cap and face insert on its down side.