The experiment first started by the calculation of the net oxygen production under white light, it started by putting the Elodea in a volumeter tube containing 3% sodium bicarbonate solution, which was assembled to the volumeter by covering the tube with the plug/pipet/syringe assembly (a 1-2cm air space between the bicarbonate solution and the top rubber cover of the volumeter tube should be left.) Then, clamp the volumeter onto the clamp stand using the tube clamp and fill 2000ml beaker with cold tap water. The beaker should be placed on the clamp stand between the volumeter tube and the light lamp. A five minutes stabilization
All bacteria need time to be able to multiply and it has been observed that generally bacteria divide into two every twenty minutes.
In this lab, the organism that we have been working with is the bacterium, Serratia marcescens. S. marcescens is a member of the Enterobacteriaceae family, and tends to grow in damp environments. S. marcescens is an ideal bacterium to work with in the lab because it reproduces quicker than other bacterium. This bacterium produces a special pigment called prodigiosin, which is red in color. The prodigiosin pigment is intensified when S. marcescens is grown at higher densities. During our experiment, temperature, pH, salinity concentration and oxygen requirements were tested on S. marcescens to measure their optimal growth and prodigiosin production.
Background information: In this lab you will be looking at the growth of bacteria under different conditions to see the how populations of bacteria grow. Read about cells in the text or e-text. For everyone, in your e-text read chapter 13, sections 13.3 and 13.4 to learn more about bacteria. Then answer the questions below.
Replace cuvette 2 into the foil sleeve, and place it into the incubation test tube rack. Turn on the flood light. Take and record additional readings at 5,10,and 15 minutes. Mix the cuvette's contents just prior to each readings. Remember to use cuvette 1 occasionally to check and adjust the spectrophotometer to 100% transmittance.
Bacteria are small, unicellular prokaryotic microbes. They have many morphologies, which include rod-shaped, spherical, spirals, helices, stars, cubes, and clubs. Classification of bacteria begins with either aerobic (requiring diatomic oxygen for growth) or anaerobic (not requiring O2 for growth). Bacteria can simply be narrowed down to gram positive (organism that stains purple or blue by Gram stain) or gram negative (organism that stains red or pink by Gram stain). Many physical and nutritional factors influence bacterial growth. Physical factors include temperature (psychrophiles, thermophiles, and mesophiles), pH (neutrophiles, acidophiles, and alkalinophiles), O2 concentration (aerobic
4.Measure 35mL of warm water and add them into each of the 4 test tubes at about roughly the same time. It is essential that the water is warm. Do not seal the test tube.
The cell cycle has four main stages. The cell cycle is the regular pattern of growth. The four stages consist of Gap 1 (G1), Synthesis (S), Gap 2 (G2), and Mitosis (M). Gap 1, consists of a cell that carries its normal functions. Calls also increase in size, and the organelles increase in number. A cell will spend the most time in this phase. But it also depends on the cell type to see how long it will spend in this phase. During this phase the cell has to pass a critical checkpoint before it can continue into the (S) stage, also called the Synthesis stage. It would be dangerous for a cell to keep dividing if the certain conditions were not met. The cells in this stage also need signals from the other cells to tell the if division is needed. Now the next stage is the Synthesis stage. During this phase the cell makes a copy of it’s nuclear DNA. By the end of the (S) phase DNA appears grainy in photos and the cell nucleus contains two complete sets of DNA. Gap 2, is the third stage of the cell cycle. The cells continue doing there thing and more growth occurs. This phase is like the checkpoint, everything in the cell has to be going right for the cell to be able to enter mitosis.
As shown in the figure above, it is evident that V.natriegens grew faster when the Brain Heart Infusion (BHI) broth contained 250mM NaCl. The # of bacterial cells at each time point was measured following the equation given in the “How to generate a bacterial growth curve” supplemental material posted on D2L. (2) The data was then recorded in the table listed above. A growth curve graph was constructed using the data above which illustrated the differences between each of the different BHI mixtures. The graph was then used to determine the generation time of V.natriegens for each different environmental condition. In order to calculate the generation time (g) the mean growth rate (k) must be calculated. The formula to do this is posted in the supplemental material “How to generate a bacterial growth curve” on D2L. The k value calculated for each condition goes as follows:
This experiment is about bacterial growth. We will demonstrate a bacterial growth curve using a closed system. Bacterial growth usually takes up to 12-24 hours to get an accurate result so we will be monitoring this growth between two classes. We also used different methods to determine bacterial growth as well as a few different calculations. One way of receiving data is by using a spectrophotometer where we will record the absorption at a given time to create the bacterial growth curve. We also used the plate count method after performing a serial dilution to calculate the actual cell density at different times given. By using this method we can count the population number of the same given and see the maximum cell density
Prediction: If UV light mutates the DNA of Serratia Marcescens then the red pigment colonies of the bacteria will no longer be produced.
Being able to control bacterial growth is something that is important in our everyday lives. As shown in the previous labs, bacteria can grow and create colonies extremely quickly especially in the right environments. By acknowledging this, it is then important to get an understanding of how bacterial growth can be controlled by humans. To control microorganisms it means to inhibit their growth (static) and or kill them (cidal) (Kenneth Todar, 2015); therefore since focusing on bacteria the terms bactericidal and bacteriostatic are both extremely important for this lab. One broad method we will use to control bacterial growth is heat. The amount of heat needed to control bacterial growth is different for different species of bacteria (Kenneth Todar, 2015). Bacteria can also respond differently depending if moist heating method such as an autoclave with steam is used, or a dry heating method such as inoculating a loop over a fire is used (Kenneth Todar, 2015). UV works by damaging the cells DNA, without proper DNA, the cells will die and the object
Streaking and spreading bacteria over the surface of the plate diluted the amount of bacteria diluted until the individual cells were streak and spread of the surface of the plate. From theses, individual cell a single colony arises. All cells in the colony genetically identical. However, the streaking and spreading was not quite properly performed, but there were some visible colonies that arise.
The purpose of the two experiments was to determine the fundamental effects that temperature has on the growth and survival of bacteria. During the first experiment five different bacterial broth cultures of Escherichia coli, Pseudomonas fluorescens, Enterococcus faecalis, Bacillus subtilis and Bacillus stearothermophilus were individually incubated at temperatures of 5, 25, 37, 45 and 55°C for one week in an aim to distinguish the effect temperature has on growth and survival of the five different species. After one week they were observed for distinguishable changes by the turbidity showing an indication of bacterial growth, or the clarity an indication of no survival.