An Enzyme is a protein, which is capable of starting a chemical reaction, which involves the formation or breakage of chemical bonds. A substrate is the surface or material on or from which an organism lives, grows, or obtains its nourishment. In this case it is hydrogen peroxide. This lab report will be explaining the experiment held to understand the effects of the changes in the amount of substrate on the enzyme’s reaction.
To prevent fluctuation in the pH, a solution known as a “buffer solution” was used in the experiment. Buffer solutions are mixtures of at least two chemicals which counteract the effect of acids and alkalis. Therefore, when a small quantity of alkali or acid solution is added the pH of the enzyme doesn’t change.
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or
These results shown from this experiment led us to conclude that enzymes work best at certain pH rates. For this particular enzyme, pH 7 worked best. When compared to high levels of pH, the lower levels worked better. The wrong level of pH can denature enzymes; therefore finding the right level is essential. The independent variable was the amount of pH, and the dependent being the rate of oxygen. The results are reliable as they are reinforced by the fact that enzymes typically work best at neutral pH
Background and Introduction: Enzymes are proteins that process substrates, which is the chemical molecule that enzymes work on to make products. Enzyme purpose is to increase the rate of activity and speed up chemical reaction in a form of biological catalysts. The enzymes specialize in lowering the activation energy to start the process. Enzymes are very specific in their process, each substrate is designed to fit with a specific substrate and the enzyme and substrate link at the active site. The binding of a substrate to the active site of an enzyme is a very specific interaction. Active sites are clefts or grooves on the surface of an enzyme, usually composed of amino acids from different parts of the polypeptide chain that are brought together in the tertiary structure of the folded protein. Substrates initially bind to the active site by noncovalent interactions, including hydrogen bonds, ionic bonds, and hydrophobic interactions. Once a substrate is bound to the active site of an enzyme, multiple mechanisms can accelerate its conversion to the product of the reaction. But sometimes, these enzymes fail or succeed to increase the rate of action because of various factors that limit the action. These factors can be known as temperature, acidity levels (pH), enzyme and/or substrate concentration, etc. In this experiment, it will be tested how much of an effect
Most enzymes have an optimum pH of around 7, which is fairly neutral. To ensure the experiment is a fair test, I will use the same pH of hydrogen peroxide in every test.
Peroxidase is an enzyme found in potatoes that catalyzes the breakdown of hydrogen peroxide, H2O2, into O2 gas and water. We examined the different pH environments that can affect the enzyme activity during the breakdown of H2O2. In order to do this, we added different levels of pH, low, medium, and high, into different test tubes with the enzyme and H2O2, and we then inverted the tube. The amount of O2 gas produced was then measured and recorded. The result was that the higher pH produced more gas, followed by medium pH, then low pH. The enzymes were more active in the pH of about 10. It increased
The objective of the lab was to examine the effects of environmental variables on the functions of an enzyme. To the point, an experiment was conducted to test the effect of pH on the function of the enzyme Amylase.
Enzymes are high molecular weight molecules and are proteins in nature. Enzymes work as catalysts in biochemical reactions in living organisms. Enzyme Catecholase is found on in plants, animals as well as fungi and is responsible for the darkening of different fruits. In most cases enzymatic activities are influenced by a number of factors, among them is temperature, PH, enzyme concentration as well as substrate concentration (Silverthorn, 2004). In this experiment enzyme catecholase was used to investigate the effects of PH and enzyme concentration on it rate of reaction. A pH buffer was used to control the PH, potato juice was used as the substrate and water was used as a solvent.
The purpose of this lab report is to investigate the effect of substrate concentration on enzyme activity as tested with the enzyme catalase and the substrate hydrogen peroxide at several concentrations to produce oxygen. It was assumed that an increase in hydrogen peroxide concentration would decrease the amount of time the paper circle with the enzyme catalase present on it, sowing an increase in enzyme activity. Therefore it can be hypothesised that there would be an effect on catalase activity from the increase in hydrogen peroxide concentration measured in time for the paper circle to ride to the top of the solution.
In this experiment, NaOH was the inhibitor used to stop the enzymatic reactions. NaOH is very basic and when added to a solution, will cause a drastic increase in pH, causing denaturation of the enzyme. The amount of product formed could be calculated by placing the test tube in a spectrometer after the addition on NaOH. A spectrometer measures the absorbance of a solution, which helps compare how much of a substance is in a solution.
The purpose of this investigation is to discover the effect of pH on the activity of catalase, an enzyme which plays the integral role of converting hydrogen peroxide into water and oxygen, and discover which pH level it will work at the most efficient rate (the optimum). The original hypothesis states that that the optimum would be at a pH is 7, due to the liver, where catalase usually resides, being neutral. The experiment consists of introducing the catalase to hydrogen peroxide, after exposure to certain solutions; hydrogen peroxide, water and hydrochloric acids, all containing the adjusted pH, and measuring the height of froth formed, an observable representation of the activity of the enzyme. The final data indicated that
The practical was carried out to investigate the effect of pH on the reaction of the enzyme acid phosphatase.
This investigation will be carried out to investigate the rate of reaction of the enzyme catalase on the substrate hydrogen peroxide.
This experiment is designed to analyze how the enzyme catalase activity is affected by the pH levels. The experiment has also been designed to outline all of the directions and the ways by which the observation can be made clearly and accurately. Yeast, will be used as the enzyme and hydrogen peroxide will be used as a substrate. This experiment will be used to determine the effects of the concentration of the hydrogen peroxide versus the rate of reaction of the enzyme catalase.