Mustafa Elgabry
October 17, 2016
Period 3
Egg Lab
Introduction: The cell membrane benifits the cell in many different ways and is composed of many different parts which help the membrane execute what it is supposed to practice. A model that represents these parts is called the fluid mosaic model. The model contains proteins and carbohydrates within a phospholipid bilayer that consists of hydrophobic tails and hydrophilic heads. All of the components within the bilayer play a role in the function of the cell membrane. For example the carbohydrates practice cell to cell recognition while the proteins transport molecules in the cell and back out. Proteins also have alternate functions such as intercellular joining and extracellular matrix. When molecules transport in and out of the cell through the membrane, there are two types of transport, passive and active transports. Passive transport occurs when molecules move with the concentration gradient. One example is simple diffusion, where the molecules transport through the cell membrane effortlessly moving from a high to low concentration. Then there is facilitated diffusion where the molecules such as glucose move with the concentration gradient but have to use a protein to pass through the membrane. Osmosis, however, is the diffusion of water molecules across the membrane, but the water molecules also need to pass through a protein because the inside of the lipid bilayer consists of hydrophobic tails. The purpose
Students have grouped together in their Anatomy Lab using three different types of Sucrose Bathing Solutions and three different deshelled chicken eggs. Students will learn the permeability of the cell membrane by studying the ability of a shell-less chicken egg to absorb the various sucrose bathing solutions. Students can see how membranes can regulate a cell’s interaction with its environment. The deshelled egg is semi-permeable, meaning that some molecules easily move across the cell membrane, some cannot. A cell membrane can transport materials through two general forms: Simple diffusion and Facilitated diffusion. Principles of Medical Physiology states “Facilitated diffusion, it is generally much faster than simple diffusion. Glucose and other large uncharged hydrophilic molecules have extremely slow rates of simple diffusion across the lipid bilayer but they cross the membrane much faster through facilitated diffusion.” Osmosis can be defined as the
Diffusion is defined as the movement of molecules from an area of high concentration to an area of low concentration. The diffusion of water molecules through a semi-permeable(selectively permeable) membrane is osmosis. Semi-permeable means that some molecules can move through the membrane while others can not. Diffusion and Osmosis are passive forms of transport requiring no energy. Active Transport utilizes energy in the form of ATP. Water is a solvent that can dissolve a number of substances more than any other substance. Wherever water goes, through the ground or a body, it takes along valuable molecules. Water’s chemical composition causes it to be attracted to many different molecules and be attracted so strongly it disrupts the forces and dissolves it. Water can pass through the semipermeable membrane without any help but can change the solution, on the other side of the cell membrane, depending on how much it diffuses in and out.
The purpose of these experiments is to examine the driving force behind the movement of substances across a selective or semiperpeable plasma membrane. Experiment simulations examine substances that move passively through a semipermeable membrane, and those that require active transport. Those that move passively through the membrane will do so in these simulations by facilitated diffusion and filtration. The plasma membrane’s structure is composed in such a way that it can discriminate as to which substances can pass into the cell. This enables nutrients to enter the cell, while keeping unwanted substances out. Active
The plasma membrane, as well as lipids, includes several proteins; the proteins that are within the membrane are found buried or embedded into the lipid bilayer. These proteins include enzymes, receptors and antigens. There are four methods of transportation both in and out of a cell; diffusion, facilitated diffusion, osmosis, and active transport. Fick's law is used to measure the rate of diffusion: [IMAGE] Diffusion is the movement of atoms, molecules or ions from a region of high concentration to a region of low concentration (down the concentration gradient²). The energy for this to occur comes directly from the particle itself; this is defined as passive (not requiring energy).
Osmosis is the passive movement of water from an area of low solute concentration to an area of high solute concentration, normally across a membrane which prevents the movement of solvent. This is a process by which materials may move into, out of, or within cells. Osmosis doesn’t depend on energy provided by living organisms but is affected by the properties of the cell membrane. The rate of osmosis is dependent on such factors as temperature, pressure, molecular properties such as size and mass, and the concentration gradient. In osmosis, the relationship between a solute’s concentration outside of cell and inside of a cell is described in terms of the tonicity of the solution outside of the cell. A cell is in a hypotonic solution when the solute is more concentrated inside the cell and therefore water moves into the cell. In this solution the cell swells as water enters, this may continue until it ruptures or hemolyzes. In the reverse condition, the cell is in a hypertonic solution
Those cells must receive nutrients and gases in order to undergo the metabolic processes that maintain homeostasis. In paragraph form, explain how you think the nutrients and gases enter the cell. Distinguish between the molecules that can enter by diffusion by simply moving across the membrane and those that must expend energy to cross the cell membrane.
Cells need to let water-soluble ions and molecules, like glucose and amino acids into them from the environment. However these molecules diffuse through the phospholipid bilayer of the plasma membrane very slowly, so they use another form of passive transport to move these
The structure of the phospholipid bilayer is a 2-layer arrangement. Basically, the phospholipid bilayer has 2 ends. One end is hydrophilic (attracted to water); therefore, the opposite end is hydrophobic and repels water. The hydrophilic ends face outwards and the hydrophobic ends face inwards. This experiment enables researchers to investigate how the cell membrane selectively chooses what cells to enter the cell through osmosis and diffusion. Within osmosis, it’s a process of what substance passes and exits the semipermeable membrane into a higher concentration to equal the outside and the inside. Unlike osmosis, diffusion is the movement of molecules transporting from a high concentration to
The cell membrane consists of eight distinctive parts that each have their own unique structure and function. The phospholipid bilayer is an integral part of the cell membrane because it is the external layer of the cell membrane and composes the barriers that isolate the internal cell components and organelles from the extracellular environment. It is composed of a series of phospholipids that have a hydrophobic region and a hydrophilic region. These regions are composed of the hydrophilic heads and the hydrophobic tails of the phospholipids, this organization of the polar heads and nonpolar tails allows the heads of the cell to form hydrogen bonds with water molecules while the tails are able to avoid water. The phospholipid bilayer also has many important functions within the cell, it gives the cell shape, provides protection, and it is selectively permeable which allows it to only let very specific molecules pass through its surface. The phospholipid bilayer is an important structure because it prevents harmful and unwanted molecules from entering the cell and isolates organelles which helps to maintain the internal environmental homeostasis of the cell.
In this lab, neutral red was used as a pH indicator. The color changes from yellow to red in a basic solution to an acidic solution. The neutral red dye was applied to Saccharomyces Cerevisiae. When the S. Cerevisiae cells come in contact with the neutral red dye, the dye gets to the cell by crossing the cell membrane. The cell membrane is the outer surface of the cell that functions as a barrier. The outside of the cell membrane is made of lipid and membrane proteins (Hardin, 2012). It is selectively permeable, which means only select ions and molecules can pass through it by transport. Membrane transport can be actively or passively moving a substance from side of the membrane to another (Hardin, 2012). Passive transport does not require energy to move molecules across the cell membrane. Diffusion is a form of passive transport that moves molecules across the membrane from an area of higher concentration to an area of lower concentration. Osmosis, diffusion, and facilitated diffusion are all examples of passive transport. Active transport requires energy to move molecules across the membrane from areas of lower concentration to higher concentration. It requires energy because it pushes sodium ions (Na+) and potassium ions (K+) (Hardin, 2012). When the dye entered the cell, it also showed its location. Sodium azide (Na+N3-) is a metabolic inhibitor that blocks the flow of electrons along
Cell membrane is a selective boundary composed of a unique phospholipid bi-layer structure consisting of lipids, proteins and carbohydrates. This structure regulates the import and export to maintain homeostasis condition inside the cell. (Knox et al., 2014) The plasma membrane is referred as a fluid mosaic which also has selective permeability. The permeability of the membrane can be varied depending on the external conditions. (Mitchel, 2015)
Cells in all living things have an outer layer known as the cell membrane. The structure of the cell membrane consists of the phospholipid bilayer organized by the arrangement of hydrophilic heads and hydrophobic tails. It is a selectively permeable membrane, where it divides the outer environment from the interior of the cell. It can control substances moving in and out of living cells. Certain molecules like gases, water, and food are permitted to pass the membrane through the method of diffusion. Diffusion refers to the process in which molecules move on the concentration gradient, where they move from an area of high concentration to an area of low concentration. A type of diffusion is known as osmosis. It is the diffusion of water moving across the selectively permeable membrane. In this lab, students will be using eggs to construct an experiment to get a better study on how osmosis works in a cell. The eggs will be soaked in vinegar solution to remove their shells to expose each inner layer that resembles a selectively permeable membrane. The egg shell is composed of calcium carbonate that would dissolves in acidic solution such as vinegar. In the chemical reaction, it releases carbon dioxide gas. After the removal of the egg shell, it will be ready to be able to construct the experiment.
Cells are always in motion, energy of motion known as kinetic energy. This kinetic energy causes the membranes in motion to bump into each other, causing the membranes to move in another direction – a direction from a higher concentration of the solution to a lower one. Membranes moving around leads to diffusion and osmosis. Diffusion is the random movement of molecules from an area of higher concentration to an area of lower concentration, until they are equally distributed (Mader & Windelspecht, 2012, p. 50). Cells have a plasma membrane that separates the internal cell from the exterior environment. The plasma membrane is selectively permeable which allows certain solvents to pass through
All cells contain membranes that are selectively permeable, allowing certain things to pass into and leave out of the cell. The process in which molecules of a substance move from an area of high concentration to areas of low concentration is called Diffusion. Whereas Osmosis is the process in which water crosses membranes from regions of high water concentration to areas with low water concentration. While molecules in diffusion move down a concentration gradient, molecules during osmosis both move down a concentration gradient as well as across it. Both diffusion, and osmosis are types of passive transport, which do not require help.
1. Chamberlain et al. Effects of Tonicity on Cell Membrane . Human Physiology Labratory Manual, 8th Edition, Expt 6 part C and D