This produces a 106% error causing a very large range of possible values causing our results to be very imprecise.
The purpose of this experiment was to determine the percent by mass in a hydrated salt, as well as to learn to handle laboratory apparatus without touching it. The hydrated salt, calcium carbonate, was heated with high temperature to release water molecules. Gravimetric analysis was used in this experiment to determine the percent by mass of water in a hydrated salt. The hypothesis of this experiment was accepted on the basis that the percent by mass of volatile water in the hydrated salt would be fewer than 30%. The percent by mass was determined by the mass of water loss devised by the mass of hydrated salt multiplied by total capacity
The percent of water can be determined in a hydrate by first determining the mass of the hydrate Copper (II) Sulfate penta-hydrate. The substance will be a deep blue color when it is a hydrate. By heating the substance, water is evaporated, removing the water from the hydrate, making it anyhydrous through a simple decomposition reaction. Evaporation is completed when the substance turns from a blue to a white/ grey color. The mass of the water in a hydrate is determined by subtracting the mass of the hydrate from the mass of the anhydrate. The mass of the water is then divided by the mass of the hydrate, and multiplied by one hundred, resulting in the percent of water in the hydrate, which is 36.35%. The percent error is determined by subtracting
After this, the solution was poured into a volumetric flask just about to the 1dm3 line and then it was left there to cool to the same temperature as the room before filling precisely to the 1dm3 line with distilled water. The molar mass of CuSO4.5H20 was 249.5 so that means 249.5g of copper sulphate was needed to dissolve, in order to make a standard solution, into 1dm3of distilled water. Following this, a linear dilution of the CuSO4.5H2O was made in order to be used to make a calibration curve after using the colorimeter to write down the absorbance of each sample. A linear dilution is diluted with distilled water in order for it to make the concentration weaker and weaker. For this investigation, the dilutions made ranged from 0.01 to 0.1 M/l . It was essential to only make up 10cm3
The purpose of this lab is to determine the percent of water in a hydrate. I learned that copper sulfate hydrate is blue on its own but, when heat is added it will change color to a dim gray. One error that may have occurred is the failure to zero the scale which would ultimately change the math in the equation. Another error that may occur in this lab is forgetting to wait the recommended amount of cooling time, which would change the mass of the elements. At the end if the lab when we look to the questions, it is also beneficial to look at the notes for the lab because it helps with the setup of equations that may come with the questions, also it is very helpful
The purpose of this lab was to determine the percent cobalt and oxalate by mass, and with that information, the empirical formula for cobalt oxalate hydrate, using the general formula Coa(C2O4)b.cH2O.
The goal of this experiment was to determine the empirical formula for a hydrate of magnesium sulfate and water. The technique that was used was measure the mass of the hydrate and then apply heat to evaporate the water. Then determine the mass of water that was in the hydrate and the mass of the remaining magnesium sulfate. The equation for the hydrate is determined by calculating the mole to mole ratio of the water and the anhydrous. The resulting formula will be formated as: MgSO4*_H2O
This experiment is based on determining the chemical formula for a hydrated compound containing copper, chloride, and water molecules in the crystal structure of the solid compound, using law of definite proportion. The general formula of the compound is CuxCly•zH2O, and aim is to determine chemical formula of this compound.
Purpose: In this lab, we will calculate the percent composition of water in a hydrate and determine the empirical formula of the hydrate.
The source of error was the two group has different timing so we had different result. Our group missing UV light therefore we did not got result for UV but some other group got. Some student didn’t follow the
By using Eq (4.4) we can calculate for a [a= m/M+m * g, a = (20 g /(283.2 g + 20 g)) * 9.81 m/s2= 0.646 m/s2]. The value of a (a= 0.5067 m/s2 +/- 0.01709 m/s2) we calculated for is not consistent with the expected value of 0.646 m/s2. As stated before, the probably cause of the inconsistency is the slight discrepancy during the experiment.
The percentage error was calculated to be 2.53%, which indicated that the calculated experimental value of the wavelength of the laser was very similar to the theoretical value.
The results clearly show the limitations of purely theoretical and purely experimental analysis due to the range of
From this we can argue that the errors I had during this experiment were not very big, and did not affect my results too much. My result supports my