Lab Report 1: Cell Transport Mechanisms and Permeability Using PhysioEx 8.0
Introduction The purpose of these experiments is to examine the driving force behind the movement of substances across a selective or semiperpeable plasma membrane. Experiment simulations examine substances that move passively through a semipermeable membrane, and those that require active transport. Those that move passively through the membrane will do so in these simulations by facilitated diffusion and filtration. The plasma membrane’s structure is composed in such a way that it can discriminate as to which substances can pass into the cell. This enables nutrients to enter the cell, while keeping unwanted substances out. Active
…show more content…
Results Activity 2: Simulating Facilitated Diffusion When glucose carriers in the membrane were set to 500, the glucose transport rate for 2.00 mM of glucose was .0008 mM/min. Equilibrium was reached at 43 minutes. At 700 glucose carriers the rate was .0010 mM , and equilibrium was reached at 33 minutes. When the glucose carriers was set at 900 the rate was .012 mM/min, and equilibrium was reached at 27 minutes. After changing the glucose concentration to 8.0 mM, the glucose transport rate with 500 carrier proteins was .0023 mM/min, and equilibrium was reached at 58 minutes. With the simulation set at 700 carrier proteins the rate was .0031mM/min, and equilibrium was reached at 43 minutes. When the simulation was done with 900 carrier proteins the glucose transport rate was .0038, and equilibrium was reached at 35 minutes.
Results Activity 4: Simulating Filtration With all solutes set at a concentration of 5.00 mg/ml and the MWCO set at 20, filtration stopped at 60 minutes, and the projected completion was 100 minutes. The residue analysis indicated all solutes present in the dialysis membrane. The filtrate concentrations for all solutes was 0.00 mg/ml. With all solutes set at a concentration of 5.00 mg/m and the MWCO set at 50, the filtration completed in 40 minutes. The residue analysis indicated all solutes present in the dialysis membrane. The filtrate concentration for NaCl was 4.81 mg/ml, and 0.00 mg/ml for all remaining
1. In passive transport, what determines the direction of movement of small particles? The direction of movement of particles in passive transport is determined by the concentration gradient (diffusion) between the cytoplasm and the extracellular fluid. 2. Why do the molecules in facilitated diffusion need help moving across the plasma membrane? Likely, the molecules are too large to pass unaided through the plasma membrane with the concentration gradient; they need to pass through special transport proteins.
The rate increased because the glucose was easier to transport with more carriers. Saturation levels decrease when carriers are added and glucose concentrations are constant. The results were the same as my prediction that assumed the glucose transport rate would increase.
Dialysis tubing is a membrane made of regenerated cellulose fibers formed into a flat tube. If two solutions containing dissolved substances of different molecular weights are separated by this membrane, some substances may readily pass through the pores of the membrane, but others may be excluded.
1.Discuss the structure of the plasma membrane and explain the process of active and passive transport through the membrane.
Using the graduated cylinder, measure 20mLs of the stock sucrose solution and 180mL of water to create a 3% sucrose solution and place it into the 250mL beaker (beaker #2). Place bags #1‐3 (red, blue, yellow) into beaker 2 and bag #4 (green) into beaker 1. Allow the bags to sit for one hour. After allowing the bags to sit for one hour, remove them from the beakers carefully open the bags, noting that often times the tops may need to be cut as they tend to dry out. Measure the solution volumes of each dialysis bag using the empty 250 ml beaker.
Explain the effect that increasing the Na+ Cl- concentration has on osmotic pressure and why it has this effect. How well did the results compare with your prediction?
What happens to the urea concentration in the left beaker (the patient)? It mixes with the water to balance out the structure.
The dialysis tubing will be clamped at one end in order to fill it and then clamped at the other end to seal the filled bag. If the bag is not soft and floppy, the experiment will not work. Blot a bag with a paper towel to absorb the moisture and weigh it, if this blotting process is not done it could interfere with the weight readings creating inaccurate information. After the bags of the solutions are prepared, they will be placed into five different beakers with different solutions. Beakers 1-4 will be filled with tap water and the fifth beaker is filled with 40% sucrose and water. Fill each beaker with just enough water or solution so that the bag is covered and place the bags in the beakers simultaneously and record each time. Every 10 min the bags are to be taken out, blotted, and weighed again before returning them back into their respective beaker for another 10 min. The process is repeated until you have reached 90 min. The weights should be recorded in grams (g).
Cell membrane is a selective boundary composed of a unique phospholipid bi-layer structure consisting of lipids, proteins and carbohydrates. This structure regulates the import and export to maintain homeostasis condition inside the cell. (Knox et al., 2014) The plasma membrane is referred as a fluid mosaic which also has selective permeability. The permeability of the membrane can be varied depending on the external conditions. (Mitchel, 2015)
All cells contain membranes that are selectively permeable, allowing certain things to pass into and leave out of the cell. The process in which molecules of a substance move from an area of high concentration to areas of low concentration is called Diffusion. Whereas Osmosis is the process in which water crosses membranes from regions of high water concentration to areas with low water concentration. While molecules in diffusion move down a concentration gradient, molecules during osmosis both move down a concentration gradient as well as across it. Both diffusion, and osmosis are types of passive transport, which do not require help.
In this lab, neutral red was used as a pH indicator. The color changes from yellow to red in a basic solution to an acidic solution. The neutral red dye was applied to Saccharomyces Cerevisiae. When the S. Cerevisiae cells come in contact with the neutral red dye, the dye gets to the cell by crossing the cell membrane. The cell membrane is the outer surface of the cell that functions as a barrier. The outside of the cell membrane is made of lipid and membrane proteins (Hardin, 2012). It is selectively permeable, which means only select ions and molecules can pass through it by transport. Membrane transport can be actively or passively moving a substance from side of the membrane to another (Hardin, 2012). Passive transport does not require energy to move molecules across the cell membrane. Diffusion is a form of passive transport that moves molecules across the membrane from an area of higher concentration to an area of lower concentration. Osmosis, diffusion, and facilitated diffusion are all examples of passive transport. Active transport requires energy to move molecules across the membrane from areas of lower concentration to higher concentration. It requires energy because it pushes sodium ions (Na+) and potassium ions (K+) (Hardin, 2012). When the dye entered the cell, it also showed its location. Sodium azide (Na+N3-) is a metabolic inhibitor that blocks the flow of electrons along
There were several steps completed to prepare for the experiment. Three dialysis tubes were filled with approximately the same volume of distilled water and then were tied shut. The initial mass (in grams) of the tubes was taken using a triple beam scale. I then filled three 500 mL beakers with 400 mL of water each and dissolved different masses of solute (table sugar) in each beaker in order to make 5%, 10%, and 20% solutions. The beakers were labeled accordingly, and then 20 g, 40 g, and 80 g (respectively) of table sugar was weighed out using a digital scale and placed into the corresponding beakers. The sugar was stirred in using a stirring rod until all of the solute was completely dissolved.
The cell is the basic unit of living things, and is made up of multiple organelles. Organelles are membrane bound subdivisions, each specialised for a specific function. This experiment looks at the Plasma Membrane, which is a semipermeable layer surrounding the cell. It’s primary job is to control what goes in and out of the cell. Molecules can move across this membrane in either an active movement or a passive movement. Active being that which requires energy and only occurs when molecules are required to move against the concentration gradient. The concentration gradient refers to the difference in the amount of solutes in the solutions of two adjacent
Which solute did not appear in the filtrate using any of the membranes? Powdered Charcoal
The difference is that along with large molecules, living cells prevent molecules with positive charges and solubility. This is not representing in dialysis tubing, and is only found in living cells because the tubing is only based on molecular size (98). When referring the rate of diffusion, the concentration gradient influences the diffusion rate, based on the factors of temperature. The ability for molecules diffuse from high to low concentrations primarily depends on the concentration gradient between the two areas.(96-99). My hypothesis for the study is that in the hypotonic, hypertonic, and isotonic solutions, the direction and rate of osmosis will determine based on the concentration inside the dialysis tubing. My prediction is that if the solution is hypotonic the results will decrease, if the solution is hypertonic the results will increase and if the solution is isotonic the solution will vary and or remain constant.