Lab Report 4 Osmosis in Potatoes
Introduction
In this lab we are going to discovery how osmosis works using a semi-impermeable membrane a potato slice. Osmosis is known as the movement of water in and out of a cell. To understand how this works we must understand two terms. Hypotonic means the environment has less solutes compared to the inside of the cell. Hypertonic means that the environment has more solutes compared to the inside of the cell. With osmosis water will always move from hypotonic too hypertonic. So the question is will water move into the potato or out of the potato? Will these results change when placed in different morality of salt water? To calculate these results, we will measure the mass of potatoes cut into equal sizes then soak these potato slices in different morality of NaCl for thirty minutes and measure the mass change in each potato slice.
Materials
• Potato (four slices)
• Knife
• Beaker (4)
• Salt Solution .2, .4, .6 mol
• Distilled water
• Food Scale
• Paper Towels
Methods
First I gather all my materials needed for the experiment (see materials list). Second I peel and slice potatoes weigh each potato in grams. Get these slices to weigh the same in mass because if they vary to much in mass that could affect the results of the experiment. Third I place each potato in its own beaker. Fourth once the potatoes are placed in beakers I make sure to place enough solution to fully cover the potato. Each beaker should have a different amount of
My prediction is that as the concentration increases, the potato cell will lose more weight. This is because of the osmosis of water particles from the potato cell cytoplasm to the solution, resulting in a loss of weight. As the concentration decreases, the potato will lose less weight until a certain point where the osmosis of particles in and out of the potato cells will be equal. I also predict that as the salt
Purpose: The purpose of this lab is to familiarize you with osmosis and, specifically, what happens to cells when they are exposed to solutions of differing tonicities.
The Osmosis and Diffusion lab was conducted to provide us with information on how built up mucus affects those conflicted by the recessive genetic disease, Cystic Fibrosis., due to a mutation to the membrane regulating chloride (Cl-). This mutation prevents the Cl- from leaving the cell causing the amount of sodium (Na+) in epithelial cells, which results in extreme mucus on the lungs and airways causing this disease to be fatal if not treated but treatment does not equate to a long lifetime. During the lab we took the data from three parts: Diffusion, Osmosis in an Elodea Cell, and finally the Role of Osmosis in Cystic Fibrosis. During Part 1 we looked at diffusion across a semipermeable membrane for starch and glucose, which resulted in both having a negative solution when placed in a semipermeable membrane. Then we looked at osmosis in the Elodea Cell to watch for the occurrence of Plasmolysis, when a cell’s plasma membrane pulls away from the cell, and how a plant cell is affected by both hypertonic and hypotonic solutions. Finally, we observed the role of Osmosis in Cystic Fibrosis using dialysis bags to represent a normal cell and a Cystic Fibrosis cell with the normal containing 1% NaCl while the Cystic Fibrosis bag contained 10% NaCl. After we ran the experiment, we looked at the Percent Change in Mass and compared them after 30 minutes. We found that Cystic Fibrosis cells didn’t change mass as much as the normal cell ending with a change in mass over -1%. The
Table 1 shows the contents of the bags and the content of the concentration it was submersed in. Bags 2-4 each contain a solution of both sucrose and water. These bags were each put into beakers containing hypertonic solution. These bags gained weight over time because the water moved from its high concentration inside the beaker to the low concentration inside the membrane of the artificial cell, the membrane being the bags that consisted of dialysis tubing. The
Osmosis is the diffusion of water across a membrane to create an equilibrium between the levels of concentration of a solute both inside and outside the cell. In this case the solute will be sugar as the potato core will be immersed in sucrose solution.
Repeated Trials: In procedure one, we tested diffusion on different sized cell models (gelatin with various volume and surface area wise). In procedure two, we tested cell models in different internal environments and similar external environments to find the effects on rate of osmosis. In procedure three, we used potato cells in different concentrated sucrose environments to test the effects on water potential on cells and osmosis.
The following hypothesis was made in regard to effect of the concentration gradient on the rate of diffusion: The higher the concentration gradient, the faster the rate of diffusion.
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Osmosis is a special type of diffusion where water molecules move down a concentration gradient across a cell membrane. The solute (dissolved substance) concentration affects the rate of osmosis causing it either to speed the process up or slow it down. Based on this, how does different concentrations of sucrose affect the rate of osmosis? If sucrose concentration increases in the selectivity-permeable baggies, then the rate of osmosis will increase.
The potato cells, took in, or gave out the water depending on the concentration of the solution it is surrounded in. The results were fine and by looking at the mass measured before the experiment, you can see that there is no reading which seems to be out of the line. As the weights before the experiment range between 2.31g and 2.46g, this tells us that the potato pieces were cut well, and I believe accurate enough. The results show that: - Osmosis actually took place in the experiment.
Showing an example of diffusion with the water molecules equally back and forth the semi-permeable membrane of the potatoes and the saucer of water. The hypertonic solution of salt water has given an example of osmosis. The water molecules passed through the semi-permeable membrane out of the potatoes but weren’t able to get back in as easily due to the salt blocking the membranes passage. This left the potatoes in the salt water saucer feeling flexible and spongy almost leaving the potato a little
Osmosis is a special type of diffusion. It is the diffusion of water across a semipermeable membrane which is a membrane that is freely permeable to water but is not freely permeable to solutes, the water moves from a dilute solution to a more concentrated solution (Karp, 2010). Both diffusion and osmosis are passive transport, energy is not used in the transport. In osmosis water moves across a membrane toward the solution of greater concentration, because the concentration of water is lower there (Martini and Bartholomew., 2007).
The purpose of this experiment was to investigate the effect of the change in concentration of sucrose on the rate of osmosis in cylinders of potatoes.
Osmosis is the movement of water molecules from high concentration to low concentration through semipermeable membranes, caused by the difference in concentrations on the two sides of a membrane (Rbowen, L.). It occurs in both animals and plants cells. In human bodies, the process of osmosis is primarily found in the kidneys, in the glomerulus. In plants, osmosis is carried out everywhere within the cells of the plant (World Book, 1997). This can be shown by an experiment with potato and glucose/salt solution. The experiment requires putting a piece (or more) of potatoes into glucose or salt solution to see the result of osmosis (a hypertonic type of solution is mostly used as it would give the most prominent visual prove of
The purpose of this lab is to test the effect of osmosis on cucumber slices. If a cucumber slice is placed in a hypertonic solution, then the mass of the cucumber slice will decrease. Whereas, if