This experiment seeks to analyze how the resting membrane potential of Orconectes rusticus muscle cells changes in response to increasing [K+]o solution concentrations. By recording the intracellular voltage of the DEM, DEL1, and DEL2 crayfish muscle cells at six concentrations of [K+]o solution, we determined whether the observed resting membrane potentials (Vrest) were significantly different from the predicted Nernst equilibrium potential values. We hypothesized that the Vrest of the crayfish muscles at each concentration would not significantly differ from the Nernst potential, which solely considers the permeability of potassium ions to the cell membrane. However, our findings suggested differently, and results indicated that the Nernst equation did not accurately predict the obtained values of the resting membrane potential. The differences in muscle cell Vrest reveal instead that the membrane is differentially permeable to other ions.
Increasing extracellular K+ causes the membrane potential to change to a less negative value because the K+ ions diffuse out across the membrane. My results went well compared to my prediction because I predicted that the resting membrane potential would become less negative.
1. Chamberlain et al. Effects of Tonicity on Cell Membrane . Human Physiology Labratory Manual, 8th Edition, Expt 6 part C and D
3. Describe what would happen to the resting membrane potential if the sodium-potassium transport pump was blocked.
2. Explain why increasing extracellular K_ causes the membrane potential to change to a less negative value. How well did the results compare with your prediction? _______________________________________________________________________
Muscle contraction can be understood as the consequence of a process of transmission of action potentials from one neuron to another. A chemical called acetylcholine is the neurotransmitter released from the presynaptic neuron. As the postsynaptic cells on the muscle cell membrane receive the acetylcholine, the channels for the cations sodium and potassium are opened. These cations produce a net depolarization of the cell membrane and this electrical signal travels along the muscle fibers. Through the movement of calcium ions, the muscle action potential is taken into actual muscle contraction with the interaction of two types of proteins, actin and myosin.
2. What was the smallest voltage required to produce a contraction (the threshold voltage)? What proportion of the fibers in the muscle do you think were contracting to produce this small response?
Next, to determine if contraction via the EMC pathway requires extracellular or intracellular calcium, the second type of stimulus was used and the tissue was stimulated using calcium free K+-depolarising solution. The bathing solution in this experiment was calcium free solution to make sure all extracellular calcium was eliminated, as without calcium, the EMC pathway is expected to produce no response.
13. Understand the transportation of potassium and sodium across plasma membranes. (p. 10 bottom right, p. 20 bottom right, p. 21 diagram)
Rationale, Significance and Hypothesis. An extrinsic factor, which exerts a dominant influence on skeletal muscle fiber phenotype, is the nervous system. Buller et al. (1960) elegantly demonstrated the plastic nature of skeletal muscle fibers in response to changes in innervation type. Later, Lφmo and Westgaard (Lφmo and Westgaard, 1974; Westgaard and Lφmo, 1988) demonstrated that depolarization of muscle with specific patterns and frequencies of electrical activity are sufficient to cause changes in mature muscle fiber phenotypes. However, how myofibrillar gene expression and structural organization is affected by the frequency of impulses during activity, the amount of activity over time, or other characteristics of patterned activity is essentially unknown. To answer these questions will require the isolation and study of subsets of muscle-specific proteins in relation to different electrical activation patterns in vivo, an issue that cannot be easily addressed in preparations currently used in the study of muscle development and maintenance. However, using novel in vivo approaches can, in part, circumvent this difficulty.
b. Describe the role of primary active transport with regard to potassium (K+) and hydrogen (H+) ion movement.
I obtained the results from the experiment supported my predictions because as the the concentration Na+ Cl- was increased from 5 mM to 10 mM (by adding more Na+ Cl-), the osmotic pressure also increased. However, after the membrane was changed to 50 MWCO, the Na+ Cl- molecules could diffuse easily through the membrane and did not caused an increase in osmotic pressure.
2. What occurs in the muscle during this apparent lack of activity? Ca++ is being released from the sacroplasmic reticulum and filament movement is taking up slack.
The mean voltage of the battery terminals while connected to the identification resistors is presented in Figure 4 12. These samples have been pulled out from the voltage sensor of the PEB panel. The voltage decreased as expected from 12.53 to 12.5 during first 20 seconds of connection to the
When a membrane is excited depolarization begins. When the membrane depolarizes the resting membrane potential of -70 mV becomes less negative. When the membrane potential reaches 0 mV, indicating there is no charge difference across the membrane. the sodium ion channels start to close and potassium ion channels open. By the time the sodium ion channels finally close. The membrane potential has reached +35 mV. The opening of the potassium channels allows K+ to flow out of the cell down its electrochemical gradient ( ion of like charge are repelled from each other). The flow of K+ out of the cell causes the membrane potential to move in a negative direction. This is referred to as repolarization. ( Marieb & Mitchell, 2009). As the transmembrane potential comes back down towards its resting potential level and the potassium channels begins to close, the trasmembrane potential level goes just below -90mV, causing a brief period of hyperpolarization (Martini, Nath & Bartholomew, 2012). Finally, as the potassium channels close, the membrane turns back to its resting potential until it is excited or inhibited again.