preview

Minnesota Micromotors

Better Essays
Open Document

June 12, 2014 The Orthopedic Motor Market: Minnesota Micromotors, Inc. and Brushless Motor Technology Minnesota Micromotors, Inc. (MM), based in Minneapolis, was a manufacturer of brushless, direct current (BLDC)1 motors used in orthopedic medical devices. Devices utilizing MM’s motors were typically used by orthopedic surgeons in large bone surgery, reconstructive surgery, trauma surgery, and sports medicine procedures. MM sold approximately 97,000 motors a year and had a 9% share of the $137 million U.S. medical motor market for orthopedic and neurosurgery devices. (See Exhibit 1A.) MM was a division of privately held Fractional Motors Limited, which had revenues of $350 million (just over $12 million, or 3%, generated by MM) …show more content…

7018). Copyright © 2009 Harvard Business School Publishing. No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the permission of Harvard Business Publishing. Harvard Business Publishing is an affiliate of Harvard Business School. Simulation Foreground Reading—The Business-to-Business Orthopedic Motor Market Orthopedic devices, used to treat musculoskeletal disorders of the human body, constituted the third largest global medical equipment market and were forecast to grow to over $20 billion by 2012. Among the 1,300 U.S. orthopedic OEMs, Zelting, Di Preto, and Stemper Corporation were the leaders in joint reconstruction, with a combined market share of 64%; Syphone and Stemper Corporation were the leading OEMs in trauma fixation, with a combined market share of 57%. The selection of motors for use as components in medical devices such as orthopedic products was an involved process, usually requiring electrical engineers at the OEM to consult with application engineers from the motor manufacturer in order to get a customized design specified to their parameters, including physical-size constraints. Given the complex nature of designing and building small-but-sophisticated orthopedic power tools,

Get Access