A muscle is made up of multiple fascicles. Fascicles are made up of many tubular myofibrils. Within the myofibrils there are myofilaments. These filaments are thick and thin proteins called Actin and Myosin. They allow the skeletal muscles to contract. Myofibrils within the skeletal muscle cell, are separated into units called sarcomeres. These are the units of skeletal muscle cell contraction.
Surrounding the Myofibril is a network of channels and tubules called Sarcoplasmic Reticulum, in which calcium is stored.
Sarcoplasm is the equivalent to cytoplasm when it comes to a skeletal muscle cell. The myofibrils occupy majority of the sarcoplasm.
The sarcoplasm contains multiple mitochondria. These mitochondria produce a sizable amount of
Introduction: According to the “Human Physiology Laboratory Manual “,BIOL 282 ,page 31 , the reason of performing this experiment is to learn how the muscle contraction occurs based on the molecular level and what kind of factors are involved .As a matter of fact, skeletal muscles contain a lot of nuclei because of the cell fusion while being developed and are made of cylindrical cells that have myofibrils. The myofibrils contain sarcomeres and the
Muscles are made up of small fibres that contract making the whole muscle contract. There are three types of muscle fibre; Type 1, Type 2a and Type 2b. All individuals have a combination of all fibre types and their combination of fibre types is genetically determined. Different parts of the body have different combinations of fibre types.
These muscle tissue cells specialised to contract and move parts of the body. It is also capable of responding to stimuli. There are three types of muscle in the body such as: skeletal, cardiac and smooth. Each muscle is created of muscle fibers that are capable of contracting and returning back to original state-relaxation. Contraction causes movement of the skeleton, soft tissue, blood or specific material. Skeletal muscle is attached to the bones of the skeleton. Some facial muscles are attached to the skin. They have direct control over them through nervous impulses from our brain sending messages to the muscle. Contractions can vary to produce fast, powerful movements. These muscles also have the ability to stretch and contract to return to original shape. Cardiac muscles are found in the chambers of the heart such as the atria and ventricles. It is under the control of the automatic nervous system; however, even without nervous input contractions can occur. It is completely different to all the other muscles. Smooth muscles are also known as involuntary due to our inability to control its movement. This muscle is usually found in the walls of hollow organs
Muscle fibres, as shown in Diagram 1, consist of myofibrils, which contain the proteins, actin and myosin, in specific arrangements . The diagram illustrates how a muscle is made up of many fascicles, which in turn are made up of many endomysiums, and within them, many muscle fibres. Each muscle fibre is made up of many myofibrils that consist of sarcomeres bound end on end . Actin is a thin filament, about 7nm in diameter, and myosin is a thick filament, about 15nm in diameter , both of which reside in the sarcomere. They are held together by transverse bands known as Z lines . Diagram 2 shows actin and myosin filaments within a sarcomere, and the Z lines that connect them.
What are the different levels of organization of a muscle down to myofilaments? What is a “sarcomere” and how are its proteins organized?
Serves as the cell 's skeleton. It is an interior protein system that gives the cytoplasm quality and adaptability. The cytoskeleton of all cells is made of microfilaments, halfway fibers, and microtubules. Muscle cells contain these cytoskeletal parts in addition to thick fibers. The fibers and microtubules of the cytoskeleton frame a dynamic system whose ceaseless rearrangement influences cell shape and capacity.
Actin and myosin filaments can be found in skeletal muscle and are the smallest units that form a sarcomere, which is the smallest contractile unit in muscle (Baechle, 2008). The Sliding Filament Theory states that the actin filaments slide inward on the myosin filaments, pulling on the boundaries of the sarcomere, causing it to shorten the muscle fiber, also known as a concentric muscular contraction (Baechle, 2008). The Sliding Filament Theory is composed of five steps: the “Resting Phase”, the “Excitation-Contraction Coupling Phase”, the “Contraction Phase”, the “Recharge Phase”, and the “Relaxation Phase” (Baechle, 2008). During the Resting Phase, the actin and myosin filaments are lined up with no cross-bridge binding of the two filaments. During the Excitation-Contraction Coupling Phase, Calcium is released from the sarcoplasmic reticulum and binds to troponin, causing a shift in tropomyosin where the binding cites are exposed (Baechle, 2008). When the binding cites are exposed, the myosin cross-bridge head attaches to actin. During the Contraction Phase, ATP bonds break, releasing energy that is used to allow the myosin head to flex, causing the actin filaments to move toward the M-bridge. During the Recharge Phase, there is a continuous repetition of the Excitation-Contraction Coupling Phase and the Contraction Phase in order to produce muscular
Myofibrils are made up of long proteins that include myosin, titin, and actin while other proteins bind them together. These proteins are arranged into thin and thick filaments that are repetitive along the myofibril in sectors known as sarcomeres. The sliding of actin and myosin filaments along each other is when the muscle is contracting. Dark A-bands and light I-bands reappear along myofibrils. The alignment of myofibrils causes an appearance of the cell to look banded or striated. A myofibril is made up of lots of sarcomeres. As the sarcomeres contract individually the muscle cells and myofibrils shorten in length. The longitudinal section of skeletal muscle exhibits a unique pattern of alternating light and dark bands. The dark staining, A-bands possess a pale region in the middle called the H-zone. In the middle of the H-zone the M-line is found, that displays filamentous structures that can join the thick filaments. The light-staining bands also known as I-bands are divided by thin Z-line. These striated patterns appear because of the presence of myofibrils in the sarcoplasm (IUPUI, 2016).
Muscle tissue - Muscle cells are the contractive tissue of body that produce force and cause motion within internal organs. Muscle tissue is separated into three different categories: visceral or smooth muscle that are located in the inner linings of organs and skeletal
Rationale, Significance and Hypothesis. An extrinsic factor, which exerts a dominant influence on skeletal muscle fiber phenotype, is the nervous system. Buller et al. (1960) elegantly demonstrated the plastic nature of skeletal muscle fibers in response to changes in innervation type. Later, Lφmo and Westgaard (Lφmo and Westgaard, 1974; Westgaard and Lφmo, 1988) demonstrated that depolarization of muscle with specific patterns and frequencies of electrical activity are sufficient to cause changes in mature muscle fiber phenotypes. However, how myofibrillar gene expression and structural organization is affected by the frequency of impulses during activity, the amount of activity over time, or other characteristics of patterned activity is essentially unknown. To answer these questions will require the isolation and study of subsets of muscle-specific proteins in relation to different electrical activation patterns in vivo, an issue that cannot be easily addressed in preparations currently used in the study of muscle development and maintenance. However, using novel in vivo approaches can, in part, circumvent this difficulty.
Skeletal Muscle Structure.The cells of skeletal muscles are long fiber-like structures. They contain many nuclei and are subdivided into smaller structures called myofibrils. Myofibrils are composed of 2 kinds of myofilaments. The thin filaments are made of 2 strands of the protein actin and one strand of a regulatory protein coiled together. The thick filaments are staggered arrays of myosin molecules.
form of myosin ATP and are not very good at delivering calcium to the muscle
There are the Smooth, the Skeletal, and the Cardiac muscular tissues. Smooth muscles are made of spindle-shaped cells.
Both of these muscles expand and contract as they have complex structures so it is essential how they do this. The cardiac muscle needs the contractions to occur in order to pump blood out of the atria and into the ventricles and round the circulatory system so the structure of this muscle shows the systole of the heart. The contractions of the skeletal muscle also depend on its structure. The binding and releasing of two strands of sarcomere is how the repeated pattern of contractions occurs. ATP is used to prepare myosin for binding to allow the contractions to happen. The skeletal and cardiac muscle also both has elasticity. The elasticity is used to restore the muscles back to their original lengths which enable them to resume back to their original length once they have contracted and been stretched.
Many cells are filled with a complex network of tube like things known as the endoplasmic reticulum. The endoplasmic