The purpose of this experiment is to study an electrophilic aromatic substitution. With observing this substitution, the identity of the major product will be discovered. The method used to reach the purpose of the experiment is a TLC. The nitration of methyl benzoate with a mixture of sulfuric acid and nitric acid will be performed in the experiment. NO2 is the electrophile in the experiment, and it is an electron withdrawing group that makes the methyl benzoate less reactive. The NO2 group in this nitration can be added to three different positions —ortho, para, or meta. When the NO2 is added, it makes a methyl nitrobenzoate. The weight recorded of methyl benzoate in the start of the experiment is 3.397 grams. The weight of the crude product
In order to isolate benzoic acid, benzocaine and 9-fluorenone, each component needed to be separated from one another. All three compounds began together in one culture tube, dissolved in methylene chloride and formed into a homogenous mixture. In this culture tube, two milliliters of aqueous three molar hydrochloric acid was added, which immediately formed two layers, the top acidic aqueous layer was clear in color and contained benzocaine, and the bottom organic formed was yellow and contained benzoic acid and 9-fluorenone. Benzocaine’s amino group is protonated by the aqueous layer hydronium. This protonation forms the conjugate acid of benzocaine, benzocaine hydrochloride. Thus, the conjugate acid, benzocaine hydrochloride is a salt in which is soluble in water and furthermore can be isolated from the organic mixture. When testing out the pH levels in benzocaine, the pH test strip was dark blue in color, indicating a pH level of around 5 to 7. When isolating benzoic acid, two milliliters of aqueous three molar sodium hydroxide was added, which deprotonates the carboxylic group in benzoic acid, forming its conjugate base, sodium benzoate. As with benzocaine hydrochloride, sodium benzoate is a water soluble ionic salt in the aqueous layer that can then be separated from the bottom organic layer containing the 9-fluorenone. The pH test strip was a vibrant red for benzoic acid, indicating a pH of 2. Now the 9-fluorenone is left, deionized water is added to remove any excess
In part A, the Grignard reagent was created. Mg is added between the benzene ring and the bromine by means of a non-chain radical reaction. Initially, Mg donates and electron to bromide and heterolytically breaks the C-Br bond; therefore, this results in a carbon radical, Br - ion, and a Mg+ radical. Next, the carbon radical and the Mg+ radical bond together, and the Mg and Br - ionically bond together2. In the experiment, no initial color change to cloudy gray was observed. Eventually, it was decided to try and
6. Purpose: to clarify the mechanism for the cycloaddition reaction between benzonitrile oxide and an alkene, and to test the regiochemistry of the reaction between benzonitrile oxide and styrene; to purify the crude product of either trans-stilbene, cis-stilbene, or styrene reaction.
To prepare and purify an ester: 1-pentyl ethanoate, using pent-1-ol and ethanoic acid. An annotated reaction showing this reaction is shown below:
Aromatic compounds can undergo electrophilic substitution reactions. In these reactions, the aromatic ring acts as a nucleophile (an electron pair donor) and reacts with an electrophilic reagent (an electron pair acceptor) resulting in the replacement of a hydrogen on the aromatic ring with the electrophile. Due to the fact that the conjugated 6π-electron system of the aromatic ring is so stable, the carbocation intermediate loses a proton to sustain the aromatic ring rather than reacting with a nucleophile. Ring substituents strongly influence the rate and position of electrophilic attack. Electron-donating groups on the benzene ring speed up the substitution process by stabilizing the carbocation intermediate. Electron-withdrawing groups, however, slow down the aromatic substitution because formation of the carbocation intermediate is more difficult. The electron-withdrawing group withdraws electron density from a species that is already positively charged making it very electron deficient. Therefore, electron-donating groups are considered to be “activating” and electron-withdrawing groups are “deactivating”. Activating substituents direct incoming groups to either the “ortho” or “para” positions. Deactivating substituents, with the exception of the halogens, direct incoming groups to the “meta” position. The experiment described above was an example of a specific electrophilic aromatic
Different procedures were used to isolate benzil from the ether layer and benzoic acid from the aqueous layers. To isolate benzil, anhydrous MgSO4 was added to the flask containing the ether layer solution. MgSO4 removes the remaining water in the ether layer solution. After making sure that enough amount of MgSO4 present in the solution, the ether solution was filtered by using gravity filtration. During filtration, MgSO4 was removed from the solution and the ether solution was collected in 25 ml flask. To separate benzil from the filtered ether solution, the beaker containing the ether solution was heated until the ether evaporated. After letting the beaker to cool to room temperature, the mass of the beaker with the benzil crystals was measured. From the combined mass of the beaker and the benzil crystals and from the predetermined mass of the beaker, the mass of the collected crystals was calculated to be 0.266 gram.
Dispense .5 mL water into the already weighed conical vial, replace cap and face insert on its down side.
Abstract: This procedure demonstrates the nitration of methyl benzoate to prepare methyl m-nitrobenzoate. Methyl benzoate was treated with concentrated Nitric and Sulfuric acid to yield methyl m-nitrobenzoate. The product was then isolated and recrystallized using methanol. This reaction is an example of an electrophilic aromatic substitution reaction, in which the nitro group replaces a proton of the aromatic ring. Following recrystallization, melting point and infrared were used to identify and characterize the product of the reaction.
In this lab, liquid-liquid extraction was performed to isolate a mixture of benzocaine and benzoic acid. 2.0107 grams of the mixture was first weighed out for the trials. When HCl was added to the mixture for the first acid extraction of benzocaine, an emulsion formed during inversion and venting that prevented a defined separation of the two layers. 8 mL of water was therefore added before continuing the extraction. The addition of NaOH then turned the top aqueous layer basic, indicated by the pH strips that turned blue when tested. A vacuum filtration isolated 0.29 grams of benzocaine and a MelTemp apparatus measured the crystal’s melting point ranges to be 85.1C-87.4C. For the base extraction of benzoic acid, the aqueous layers were retrieved
The purpose of this lab is to understand the process of eliminating an alkyl halide to form an alkene. The experiment is carried out by first converting the alcohol, 2-methy-2-butanol, into the alkyl halide of 2-chloro-2-methylbutane that will then be put through dehydrohalogenation that favors elimination reaction (E2) to create a mixture of 2-methyl-2-butene and 2-methyl-1-butene. A fractional distillation will be taken to purify the mixture and an additional gas chromatography will be done to further analyze the mixture composition. A bromide test will be done to determine the product of an alkene in the experiment.
Following the instructions from the Biofuel Enzyme Kit, we performed a baseline experiment in which all factors remained constant except time in order to establish a control for absorbance and concentrations of p-nitrophenol. We then used this information to determine the Vo and the other concentrations in order to form a graph. On a molecular level, since the temperature, pH, inhibitor,
In this experiment, the pKa, dissociation constant, of 2-naphthol was determined by measuring the UV-visible absorption spectra of solution of the acid at different pH values.
Electrophilic aromatic substitution (EAS) reactions involve the replacement of a hydrogen atom bonded to an aromatic compound by an electrophile. The rate and direction of the EAS reaction depends on the functional groups present on the aromatic compound. The purpose of this experiment was to synthesize bromonitrobenzene by reacting bromobenzene with sulfuric acid and nitric acid via EAS. Gas chromatography (GC) was performed on the product in order to confirm its identity by comparing its observed retention time to the true retention time of bromonitrobenzene. Additionally, the relative rates of reaction for several substituted aromatic compounds were predicted and examined via reaction with molecular bromine. The rates were than compared to gain insight on the affect of different substituents on rates of reactions concerning aromatic compounds.
Introduction The purpose of this lab was to examine nitinol’s, a nickel-Titanium shape memory alloy, solid phase transformations and behaviors, a shape memory alloy can be defined as a specific group of metal alloys that can recover from a seemingly permanent strain by applying a certain amount of heat to the substance. This occurs through a slight rearrangement of the atoms within the solid. The structure of the austenite phase of nitinol is very rigid and perfectly aligned, whereas the martensite phase is soft and can be deformed easily. Additionally this lab also explored identifying a set of unknown wires by comparing calculated densities to known densities for each of the wires, estimating the temperature when the transformation from the martensitic phase of nitinol to the austenitic phase of nitinol occurs, “retraining” the nitinol wire to a new austenitic shape, and examining the acoustic properties for nitinol in both the martensitic phase and austenitic phase through an online investigation.
Samples of benzophenone, malonic acid, and biphenyl were each tested with water, methyl alcohol, and hexane. Benzophenone was insoluble in water as it is nonpolar while water is highly polar. Benzophenone was soluble in methyl alcohol, dissolving in 15 seconds, because methyl alcohol is intermediately polar as benzophenone is nonpolar. Methyl alcohol is polar but not as much as water. Thus, the nonpolar benzophenone was soluble in methyl alcohol. Benzophenone was partially soluble in hexane because hexane is nonpolar as is benzophenone. Thus, benzophenone was dissolved in hexane. Malonic acid was soluble in water because both malonic acid and water are polar. It took 25 seconds for malonic acid to dissolve in water. Malonic acid was soluble in methyl alcohol because malonic acid is polar and methyl alcohol is intermediately polar, allowing malonic acid to dissolve in the methanol in 15 seconds. Malonic acid was insoluble in hexane because hexane is nonpolar while malonic acid is polar. Biphenyl was insoluble in water as water is highly polar whilst biphenyl is nonpolar. Biphenyl was partially soluble in methanol which is intermediately polar whilst biphenyl is nonpolar, allowing it to dissolve a little. Biphenyl was soluble in hexane because both biphenyl and hexane are nonpolar molecules. Biphenyl dissolved in hexane in 10 seconds.