preview

Nt1310 Unit 4 Test Report

Decent Essays
The training data contained both labeled data D_la={〖x_i,y_i}〗_(i=1)^kl and unlabeled data D_un= {〖x_j}〗_(j=kl+1)^(kl+u) where x_(i ) is the feature descriptor of image I and y_i={1,…,k} is its label .k is the number of categories. l is the number of labeled data in each category, and u is the number of unlabeled data. Our method aims to learn a high-level image representation S by exploiting the few labeled data D_land great quantities of unlabeled ones, which is then fed into different classifiers to obtain final classification results. The procedure of semisupervised feature learning by SSEP is shown in Fig. 1. First, a new sampling algorithm based on GNA [19] is proposed to produce T WT sets P^t={(〖s_i^t,c_i^t)}〗_(i=1)^kp , t ∈{1,…..,T}
Get Access