Nuclear Decay And Nuclear Energy

8049 Words33 Pages
Nuclear power is the use of nuclear reactors to release nuclear energy, and thereby generate electricity. The term includes nuclear fission, nuclear decay and nuclear fusion. Presently, the nuclear fission of elements in the actinide series of the periodic table produce the vast majority of nuclear energy in the direct service of humankind, with nuclear decay processes, primarily in the form of geothermal energy, and radioisotope thermoelectric generators, in niche uses making up the rest. Nuclear power stations, excluding the contribution from naval nuclear fission reactors, provided 13% of the world 's electricity in 2012. The share of the world 's primary energy supply, which refers to the heat production without the conversion efficiency of about 33%, was about 5.7%. Its share of the global final energy consumption is below 2.5%.
In 2013, the IAEA report that there are 437 operational nuclear power reactors, in 31 countries, although not every reactor is producing electricity. In addition, there are approximately 140 naval vessels using nuclear propulsion in operation, powered by some 180 reactors. As of 2013, attaining a net energy gain from sustained nuclear fusion reactions, excluding natural fusion power sources such as the Sun, remains an ongoing area of international physics and engineering research. More than 60 years after the first attempts, commercial fusion power production remains unlikely before 2050.
There is an ongoing debate about nuclear power.
Get Access