In the observing osmosis lab, the hypothesis read that the grape in the tap solution will gain the most mass, while the grape in the salt solution will lose the most mass is partially refuted. The hypothesis is partially refuted since the part that was correct was that the grape in the salt solution will shrink, because the starting mass of the grape was 10.81g and the fruit was very round with one big brown spot, when the grape was taken out, it was flat and misshapen with a few brown spots, and the ending mass was 9.81g which means it shrunk by 1g. The part that was refuted or incorrect was that the grape in the tap solution will gain the most mass, this grape’s starting mass was 9.00g and it looked large with multiple brown spots, the ending mass was 10.24g and the grape looked small and cracked. Although the tap water grape did gain mass, it didn’t gain as much as the gape in the distilled water. The grape in the distilled water was smaller than the rest and very green in the beginning and had a mass of 7.77g, at the end, the fruit weighed 9.19g and was flat on one side with a few dots on the grape’s surface. Therefore, the distilled …show more content…
The hypotonic solution was the grape in the distilled water because this grape gained mass and grew in weight because so much water was absorbed by the grape, that the fruit could almost hold no more water and was about to burst. The most isotonic reaction occurred in the sugar water grape because this grape only gained .87g, so this means that the grape or “cell” was healthy. The cell membrane, or grape skin, determined how much water came in or out of the grapes. Osmosis occurred in the salt water solution because the grape goes from a high concentration to a low concentration so the grape loss weight and mass, and lost
The corrected cumulative change in weight due to osmosis from different concentrations of sucrose and tap water, are shown in Figure One. This figure shows the weight change in grams for every interval of 10 minutes. Using the corrected cumulative change in weight eliminates bag #1 because its average rate of change will always be zero. Below is a table of the bag weights at 10 minute intervals after being tested for an hour:
Gummy Bears, cup, paper towels, triple beam balance, water, wax paper, metric ruler, calculator, and pencil.
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
The main purpose of the experiment was to test the idea that water would move from the higher concentration to the lower concentration. In order to test this theory, we placed potato slices in 7 different containers, each containing different concentrations of NaCl, to measure the weight change from osmosis. The containers ranged from 0M NaCl all the way to .6M NaCl. We measured the potato slices before and after placing the slices in the solutions and recorded the net change in weight to determine the tonicity of the potato cells. Our results showed that the potato slices put in a NaCl solution of .2M or higher lost weight and the potato slices put in a NaCl solution of .1M or lower gained weight. This shows that the osmolarity of the potato falls within the range of .1M to .2M, and it also proves the process of Osmosis by having the higher concentration move to the lower concentration. In addition to this, it can be concluded that the osmolarity of cells can be determined by observing the affects of osmosis.
After completing this experiment, our tap water hypothesis was correct, and our saltwater hypothesis was also proven. For the tap water, the gummy bear expanded as we thought it would. This was because of osmosis. The water outside of the bear diffused into the bear from the higher concentration outside into the lower concentration inside of it. The gummy bear was a selectively permeable membrane. This made a hypotonic solution, and the water rushed into the bear, making it get bigger. For the salt water, the bear shrunk as we predicted, also because of osmosis. This was a hypertonic solution, so the water rushed out of the bear, making it smaller. So our hypothesis for both tap and salt water were correct. We carried out the experiment properly
During osmosis, solvents move across a semipermeable membrane in order to regulate the solute balance within the cell (Campbell Biology). Experiment 5.5 was conducted to further research osmotic activity, particularly in potato cells in different osmolarities of a NaCl solution. The goal of the experiment was to find out whether the potato slices used would be hypotonic or hypertonic to the different osmolarities. This process is relevant because without osmosis, the passage of solvents would not be possible. To perform the experiment, seven potato slices were soaked in 5cm of a different osmolarity level of a NaCl solution (0M – 0.6M) to determine whether each slice was hypotonic or hypertonic to the NaCl solution it was placed in, based on percent weight change. The prediction that the potato slices soaked in solutions with lesser osmolarities (0M – 0.1M) of NaCl would be hypotonic to their solutions, and the potato slices soaked in solutions with higher osmolarities (0.2M – 0.6M) would be hypertonic to their solutions was supported by this experiment because the slices soaked in (0.2M – 0.6M) had
The reasoning behind this experiment is the examine whether the rate of osmosis is changed due to a change in temperature. It was hypothesized that the rate of osmosis will increase as the temperature of the sucrose is increased. The rate of osmosis was tested by using the different jars full of different temperate water and testing how high the water rose on an osmometer over a span of 20 minutes. An osmometer is a tool used to measure rates of osmosis. The different temperatures tested on a sucrose solution were 5 degrees Celsius, 20 degrees Celsius, and 37 degrees Celsius. Rates of osmosis were higher in the hot water than in the cold water and control. The results showed that the rate of osmosis increased as the temperature increased, henceforth the hypothesis was supported. In conclusion, the experiment showed how changes in temperature affect the rate of osmosis.
All cells in the human body are surrounded by a plasma membrane made up of lipids and proteins which form a barrier. The proteins and lipids in the membrane occupy different roles. The lipids create a semipermeable barrier and the proteins are part of a cross membrane transport. To pass through the membrane a substance goes through a transport known as diffusion. Diffusion is movement of molecules from a high area of concentration to an area of low concentration. There are two different forms of diffusion. One example of diffusion is known as simple diffusion, an unassisted movement of dissolved substances through a selectively permeable membrane (Marieb pg. 54). The
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Osmosis is the movement of water molecules from high concentration to low concentration through semipermeable membranes, caused by the difference in concentrations on the two sides of a membrane (Rbowen, L.). It occurs in both animals and plants cells. In human bodies, the process of osmosis is primarily found in the kidneys, in the glomerulus. In plants, osmosis is carried out everywhere within the cells of the plant (World Book, 1997). This can be shown by an experiment with potato and glucose/salt solution. The experiment requires putting a piece (or more) of potatoes into glucose or salt solution to see the result of osmosis (a hypertonic type of solution is mostly used as it would give the most prominent visual prove of
Within every cell, a movement of a solvent occurs through a semipermeable membrane to equalize the concentration of solute on both sides of the membrane. The diffusion of water across the cell’s membrane down to its concentration gradient is called osmosis. In this case, the concentration gradient is the difference of density between one side of the cell membrane to the other. Since the cell’s membrane is permeable, particles can flow freely in and out of the cell, but the net flow will be strong in the direction of lower concentration until the system has reached a stage of equilibrium, the point at which both sides of the membrane are equal. In the
This experiment was used to examine the hypothesis that: Osmosis is dependent on the concentrations of the substances involved.
In this lab we are going to discovery how osmosis works using a semi-impermeable membrane a potato slice. Osmosis is known as the movement of water in and out of a cell. To understand how this works we must understand two terms. Hypotonic means the environment has less solutes compared to the inside of the cell. Hypertonic means that the environment has more solutes compared to the inside of the cell. With osmosis water will always move from hypotonic too hypertonic. So the question is will water move into the potato or out of the potato? Will these results change when placed in different morality of salt water? To calculate these results, we will measure the mass of potatoes cut into equal sizes then soak these potato slices in different morality of NaCl for thirty minutes and measure the mass change in each potato slice.
The purpose of this lab is to test the effect of osmosis on cucumber slices. If a cucumber slice is placed in a hypertonic solution, then the mass of the cucumber slice will decrease. Whereas, if