The freezing point of a substance is when the substance turns from a liquid to a solid. The freezing point of a solvent can be decreased by adding a solute and making a solution, which is a freezing point depression. From knowing the temperature difference between a pure solvent and a mixture, it is possible to find the molar mass of the solute.
In determining the melting point range of the aspirin, a capillary tube (sealed at one end) was one-third-filled with the dried aspirin. The capillary tube and a thermometer were immersed in an oil bath. The temperature at which the solid started to melt and the temperature when the entire sample was completely liquefied were recorded as the melting point temperature range.
The vial was removed from the heat and cooled to room temperature. The spin vane was rinsed with 2-3 drops of warm water over the conical vial. The vial was cooled to room temperature then placed in an ice bath for 15 minutes. The liquid was decanted from the mixture and the resulting crystals were dried on filter paper. The crystals were then placed on a watch glass for further drying. The crystals were weighed and a small sample was placed into a capillary tube for melting point determination.
Tube 4 now should only have crude solid in the tube and it is then weighed. The tube is placed into a 50℃ water bath and then approximately 0.5 -1 ml of methanol is added, as well as H2O until the solution gets cloudy, once the solution is dissolved it is cooled to room temperature and then iced. The crystals are then collected using a Hirsh funnel. Next a small amount (~ 0.1g) of the crystals are placed into a melting point tube and placed into the melting point machine to record the unknown neutral substances melting point.
Temperature had a direct effect on oxygen consumption of crayfish, Orconectes propinquus. Crayfish acclimated to warm temperature (20 to 25 C) had a mean mass of 8.25g +/- 1.05. Crayfish acclimated to cold temperature (3 to 5 C) had a mean mass of 10.61g +/- 0.77. Oxygen consumption rates of 30-60 minute treatments were used and there was no significant difference between the two different treatments (t=0.48, df=58, P=0.70). The data from 0-30 minutes were not used because the crayfish were disrupted by transportation and the data were not normally distributed. The Q10 value was 1.05, representing that there was full compensation for oxygen consumption for the crayfish at two different acclimated temperatures. The oxygen consumption of crayfish was not affected significantly by two different temperatures (Figure 1).
After each of the solids were completely dry, each was placed into a MelTemp device. The temperature at which each solid began to melt and completed melting was recorded.
In order to fulfil the labs purpose, the lab was split into two parts. The first part consisted of measuring and determining the freezing point depression of the solution water. The second part consisted of measuring and determining the freezing point depression of a solution that consisted of water and an unknown solute.
Place the test tube containing cold water in a test tube clamp and hold the test tube above the burning alcohol. Observe the outside of the test tube for evidence of product formation.
The freezing point depression constant for water that was experimentally determined in this analysis was 0.0479 °C/m, which was derived from the slope of the trend line in Figure 4. This is significantly lower than the constant stated in the literature of 1.86 °C/m.1 The freezing point temperature determined via cryoscopy should have been much lower in the high sucrose concentration solutions.
Abstract: This experiment introduced the student to lab techniques and measurements. It started with measuring length. An example of this would be the length of a nickel, which is 2cm. The next part of the experiment was measuring temperature. I found that water boils around 95ºC at 6600ft. Ice also has a significant effect on the temperature of water from the tap. Ice dropped the temperature about 15ºC. Volumetric measurements were the basis of the 3rd part of the experiment. It was displayed during this experiment that a pipet holds about 4mL and that there are approximately 27 drops/mL from a short stem pipet. Part 4 introduced the student to measuring
The purpose of this lab was to study colligative properties. These properties are properties that are affected when a solute is added to a solvent. Thus, the amount is important, not the actual type of substance, for the colligative properties. A couple types of this property are the freezing point and boiling point of a substance. (1)
The objectives of this lab are, as follows; to understand what occurs at the molecular level when a substance melts; to understand the primary purpose of melting point data; to demonstrate the technique for obtaining the melting point of an organic substance; and to explain the effect of impurities on the melting point of a substance. Through the experimentation of three substances, tetracosane, 1-tetradecanol and a mixture of the two, observations can be made in reference to melting point concerning polarity, molecular weight and purity of the substance. When comparing the two substances, it is evident that heavy molecule weight of tetracosane allowed
The next step in this lab is to rinse the Erlenmeyer flask with distilled water down the drain and then repeat the experiment, this time adding 10 ml of 0.10M KI and 10 ml of distilled water to the flask instead. The flask should again be swirling to allow the solution to succumb to the same temperature as the water bath and once it has reached the same temperature, 10 ml of 3% H2O2 must then be added and a stopper must be immediately placed on the flask and recording should then begin for experiment two. After recording the times, the Erlenmeyer flask must then be rinsed again with distilled water down the drain. After rinsing the flask, the last part of the lab can now be performed. Experiment three is performed the same way, but instead, 20 ml of 0.10 ml M KI and 5 ml of distilled water will be added and after the swirling of the flask, 5 ml of 3% H2O2 will be added. After the times have been recorded, data collection should now be complete.
An investigation into the effects of varying seawater concentrations on two marine invertebrates’ osmoregulatory abilities; Carcinus maenas and Arenicola marina.
The beaker was slowly heated on a hot plate with low stirring until most of the stilbene was dissolved. 0.4 g of pyridinium tribromide was measured and added to the beaker after 5 minutes of heating. Small amounts of ethanol were used to clean the sides of the beaker. The beaker was heated for an additional 10 minutes on low temperature. An ice bath was prepared. The beaker was removed from the hot plate and left to cool to room temperature. Once at room temperature, the beaker was placed in the ice bath for 15 minutes. The solid product was collected through vacuum filtration and the product was weighed and a melting point was taken. Waste was disposed of in the correct waste bins and lab bench was cleaned