POW 9
Trig Ms. T
Problem Statement:
Create 2 formulas, one that will calculate the last number in terms of the first number and a constant increase in rate as well as the total amount of numbers. The second formula will add ass of the resulting numbers from the first formula together after the last number is calculated.
Process:
Kevin’s Decisions:
In order to put the problem into perspective, I first set up my own possible variables for the first platform height, the difference in height between each platform, and the total number of platforms. I came up with the numbers for each variable respectively: 6, 3, and 3. The first platform is 6 feet tall. There are 3 platforms. The distance between each platform is 3 feet. The…show more content… To find out the total height we could add the height of all of the platforms. However, the total height can also be determined by a formula since the increase in height from platform to platform is the same. What I saw was that there are pairs within the heights of the first platform and last platform that when added result to the same number. For example: If there are 5 platforms in total, the first platform is 4 feet and the increase in height is 2 feet, the height of the platforms in order are: 4, 6, 8, 10, 12.
The height of the last platform is 12 and the height of the first platform is 4. When we add 4 and 12 the result is 16 and divided by 2 is 8. The 2nd platform is 6 feet and the 4rth platform is 10 feet When added together and divided by 2 to get the average we get 8. The platform is the average number, which is 8. I saw this and put it into a formula. I took the height of the first platform and added it to the last platform, and substituted it for the variables f+l (where l=the height of the last platform). Then I took the total number of platforms and divided it by 2 to get the average, and multiplied it by the average of both platforms to get the total height of all of the platforms. This resulting number is the total length required in square feet of fabric to cover the fronts of the platforms.
I got the formula (x/2)