Introduction
Enzymes are proteins in living organisms that speed up chemical reactions and are also vital in making sure our bodies can function. These chemical reactions are know as catalysts. However, enzymes can not create these reactions by themselves. So, they work with molecules called substrates to help them out. The enzyme and substrate would usually fit perfectly together, unless the enzyme loses its shape. Two major things that can impact the disfiguration of the enzyme's shape are changes in temperature or pH levels. In this lab, our goal was to show if enzyme activity differs due to changes in temperature and pH levels by using catalase solution (potato puree), hydrogen peroxide, Hydrochloric Acid solution, sodium hydroxide (base
…show more content…
We measured 3 mL. of catalase into eight test tubes because to us, it was the right amount to place into a test tube, without having any overspills. For two test tubes, we added 9 mL. of vinegar and 9 mL. of Hydrochloric Acid (HCL) to another pair of test tubes because this amount was reasonable for not being too much that it overpowers the catalase and not too little that we may not see any impact. Now, we repeat the same process of adding hydrogen peroxide (H2O2) and sodium hydroxide (base solution) to the rest of the pairs of test tubes with catalase. Our group then analyzed each pair's appearance and its amount of foam. Thus, we can compare it to later results from the second experiment that would be conducted as the following. Afterwards, our group individually takes one tube from each pair, containing the same base or acid, and put it into a beaker filled halfway with ice for two to three minutes. We believed this amount of time was the most efficient for us to be able to finish the lab and collection of data. At the same
Background and Introduction: Enzymes are proteins that process substrates, which is the chemical molecule that enzymes work on to make products. Enzyme purpose is to increase the rate of activity and speed up chemical reaction in a form of biological catalysts. The enzymes specialize in lowering the activation energy to start the process. Enzymes are very specific in their process, each substrate is designed to fit with a specific substrate and the enzyme and substrate link at the active site. The binding of a substrate to the active site of an enzyme is a very specific interaction. Active sites are clefts or grooves on the surface of an enzyme, usually composed of amino acids from different parts of the polypeptide chain that are brought together in the tertiary structure of the folded protein. Substrates initially bind to the active site by noncovalent interactions, including hydrogen bonds, ionic bonds, and hydrophobic interactions. Once a substrate is bound to the active site of an enzyme, multiple mechanisms can accelerate its conversion to the product of the reaction. But sometimes, these enzymes fail or succeed to increase the rate of action because of various factors that limit the action. These factors can be known as temperature, acidity levels (pH), enzyme and/or substrate concentration, etc. In this experiment, it will be tested how much of an effect
This experiment looked at how substrate concentration can affect enzyme activity. In this case the substrate was hydrogen peroxide and the enzyme was catalase. Pieces of meat providing the catalase were added to increasing concentrations of hydrogen peroxide in order to measure the effect of hydrogen peroxide concentrations on the enzyme’s activity. The variable measured was oxygen produced, as water would be too difficult to measure with basic equipment.
Students will be observing normal catalase reaction, the effect of temperature on enzyme activity, and the effect of pH on enzyme activity in this experiment. The enzymes will all around perform better when exposed in room temperature than when it is exposed to hot and cold temperatures. This is based on the fact that the higher the temperature, the better the enzymes will perform, but as the temperature reaches a certain high degree, the enzymes will start to denature, or lose their function.
Abstract: Enzymes, catalytic proteins that at as catalysis which makes the process of chemical reactions more easily. There are two main factors that actually affects enzymes and their functions which are temperature and pH. Throughout this experiment, the study how pH and peroxidase affects each other and the enzyme was made. The recordings of how the enzymes responded when it was exposed to four different pH levels to come up with an optimum pH which was predicted in the hypothesis and the IRV at the end.
Enzymes are defined as catalysts that speed up chemical reactions but remain the same themselves. The shape of an enzyme enables it to receive one type of molecule and that specific molecule will fit into the enzyme’s shape. Where a substance fits into an enzyme is called the active site and the substance that fits into the active site is called a substrate. Several factors affect enzymes and the rate of their reactions. Temperature, pH, enzyme concentration, substrate concentration, and the presence of any inhibitors or activators can all affect enzymes. Temperature can affect enzymes because if the temperature gets too high, it can cause the enzyme to denature. pH can affect an enzyme by changing the shape of the enzyme or the charge properties of the substrate so that either the substrate cannot bind to the active site or it cannot undergo catalysis. Every enzyme has an ideal pH that it will strive in. Increasing substrate concentration increases the rate of reaction because more substrate molecules will be interacting and colliding with enzyme molecules, so more product will be formed. Inhibitors can affect enzymes and the rate of their reactions by either slowing down or stopping catalysis. The three types of inhibitors include competitive, non-competitive, and substrate inhibition.
Enzymes are biological catalysts. They work by lowering the activation energy needed to initiate a chemical reaction. Enzymes work within an optimal temperature and optimal pH. Enzymes are highly specific for a single substrate. The Enzyme is usually much larger in size than the substrate it binds to. In some cases, an enzyme requires something called a cofactor to begin the chemical reaction. There were four different experiments that were executed in the enzyme lab. Experiment 7.1, the first experiment, was performed to test the effect of temperature on enzymatic
Enzymes are a very important factor in our daily life without enzymes the speed of chemical reactions in our body would work very slow and kill us. Enzymes are protein or also known as RNA molecules that increase the rate of biotransformations. Enzymes bind substrate molecules and reduce the activation energy of the reaction catalyzed. Some protein enzymes need a nonprotien group for their activity as a cofactor (Liu 2017). It is very important to know about enzymes because we all should be aware of how our bodies function this helps us understand why we become ill, why something out of the ordinary might appear on our skin, why older people become weaker, etc.
Enzymes are high molecular weight molecules and are proteins in nature. Enzymes work as catalysts in biochemical reactions in living organisms. Enzyme Catecholase is found on in plants, animals as well as fungi and is responsible for the darkening of different fruits. In most cases enzymatic activities are influenced by a number of factors, among them is temperature, PH, enzyme concentration as well as substrate concentration (Silverthorn, 2004). In this experiment enzyme catecholase was used to investigate the effects of PH and enzyme concentration on it rate of reaction. A pH buffer was used to control the PH, potato juice was used as the substrate and water was used as a solvent.
Introduction: Enzymes are defined as being molecules that function as biological catalysts, increasing the rate of reaction without being consumed by the reaction. They allow molecules to use less energy to create the reaction. Each enzyme has a specific shape for its substrate and only that substrate can bind to the enzyme to create the reaction. If environmental factors change such as PH levels or temperature this could cause enzymes to change their shape and therefore their function. If the enzyme structure changes the molecules can’t bind to them causing the reactions to not be able to be made. The enzyme for this experiment was the catalase enzyme which is used for the degradation of hydrogen peroxide, it is a protective enzyme located in nearly all animal cells. After researching the topic finding the ways enzymes are effected by certain environmental factors drove to do the experiment. My hypothesis for this reaction was if the temperature goes up the enzyme reaction will go down because of denaturation. According to my hypothesis at 0 degrees Celsius the enzyme reaction should be the highest and at 23 degrees it should go down at 37 it should keep going down and at 55 degrees the enzyme reaction rate should be the lowest. This experiment is so important because the catalase enzyme breaks down H2O2 which is poisonous to our bodies and turns it into two chemicals that are not harmful to us,
The purpose of this experiment was to record catalase enzyme activity with different temperatures and substrate concentrations. It was hypothesized that, until all active sites were bound, as the substrate concentration increased, the reaction rate would increase. The first experiment consisted of five different substrate concentrations, 0.8%, 0.4%, 0.2%, 0.1%, and 0% H2O2. The second experiment was completed using 0.8% substrate concentration and four different temperatures of enzymes ranging from cold to boiled. It was hypothesized that as the temperature increased, the reaction rate would increase. This would occur until the enzyme was denatured. The results from the two experiments show that the more substrate concentration,
Introduction: Starting out with some background information, I know that enzymes are biological catalysts. The enzyme that I used for this experiment was potato juice. Enzymes make reaction rates go faster. They lower activation energy, making chemical reactions. Temperature has an effect on canola cultivars. The higher temperature decreased stem diameter, but room temperature had thicker stems. So I believe the same will happen for the catechol oxidase; the solution will react faster at room temperature. Other enzymes can also have different effects such as the enzyme in cattle serum. The enzyme lost activity in room temperature. With that being said room temperature can also be detrimental with specific enzymes. Fungus also
The purpose of this lab report is to investigate the effect of substrate concentration on enzyme activity as tested with the enzyme catalase and the substrate hydrogen peroxide at several concentrations to produce oxygen. It was assumed that an increase in hydrogen peroxide concentration would decrease the amount of time the paper circle with the enzyme catalase present on it, sowing an increase in enzyme activity. Therefore it can be hypothesised that there would be an effect on catalase activity from the increase in hydrogen peroxide concentration measured in time for the paper circle to ride to the top of the solution.
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or
Biology 121 KS Lab Report IV 03/06/2018 Jannet Marin Testing the Effects of Temperature and pH on Potato Catalase Activity Introduction: To bear life in the cell, nearly all metabolic processes need enzymes. Enzymes are “macromolecular biological catalysts that help to speed up, or catalyze, chemical reactions.” The activity of enzymes is also affected by changes in the pH and temperatures. However, tremendously high or low pH and temperature values could cause complete loss of activity for most enzymes. Catalase is the most common enzyme found in potatoes and almost all organisms that are exposed to oxygen.
The independent variable in this investigation is pH. Each individual enzyme has it’s own pH characteristic. This is because the hydrogen and ionic bonds between –NH2 and –COOH groups of the polypeptides that make up the enzyme, fix the exact arrangement of the active site of an enzyme. It is crucial to be aware of how even small changes in the