Related Literature and Review of Related Studies for Fertilizer

Better Essays
Chapter II
Review of Related Literature and Studies
Related Literature
Commonly known as 'Styrofoam' that is one of the most widely used type of plastics. It is a strong plastic created from erethylene and benzine that can be injected, extruded, or blow molded; making it a very useful and versatile manufacturing material. It is also a rigid, transparent thermoplastic, which is present in solid or glassy state at normal temperature. But, when heated above its glass transition temperature, it turns into a form that flows and can be easily used for molding and extrusion. It becomes solid again when it cools off. This property of polystyrene is used for casting it into molds with fine detail. Pure polystyrene polymer is colorless
…show more content…
Oyster-shell is entirely composed of CaCO3 (approximately 96%) and other minerals of trivial amount. Various oyster-shells due to sources and individual characteristics are almost similar in the chemical composition. The mineral phase of calcium carbonate turns out to be calcite.

Related Studies
Xu, Yi; Jiang, Linhua; Xu, Jinxia; Li, Yang (2012) pointed out that mix proportion parameters of expanded polystyrene (EPS) lightweight aggregate concrete are analyzed by using Taguchi's approach. The density, compressive strength and stress-strain behavior were tested. The optimal mixture of EPS lightweight aggregate concrete was selected among experiments under consideration to manufacture the lightweight hollow bricks. The results show that EPS dosage has the most significant effect on compressive strength of EPS lightweight aggregate concrete, then water and cement ratio, while the content of cement and sand ratio play a comparatively less important part. The relationship between density and compressive strength of EPS lightweight aggregate concrete is proposed as [f.sub.c] = 2.43 x [[gamma].sup.2.997] x [10.sup.-9]. The legitimacy of the use of EPS lightweight bricks made by EPS lightweight aggregate concrete is confirmed.
According to the study of Sohrab Veiseh1 and Ali A. Yousefi2 (2003) the heavy weight of bricks accounts for the great mass of construction and thus causes more vulnerability against earthquake forces. In the present work, it is,
Get Access