The primary structure of a protein is a specific linear sequence of amino acids, it determines the final 3D structure. These amino acids form a covalent bond via peptide bonds between the nitrogen on the α-amino group on one amino acid and the oxygen from the α-carboxyl group of another. This joining of two or more amino acids to for a polypeptide chain is known as a condensation reaction in which a molecule of water is removed, Figure 1. The ends of a polypeptide have specific names, the end with a free amino group is referred to as the N-terminal, whereas
The basic building blocks of proteins are amino acids, the biuret reaction tests for protein. A solution of sodium hydroxide is added to a sample then a few drops of copper sulphate solution, if positive – the solution will turn mauve. There are 20 different amino acids and they can be joined in any order. Therefore there can be many different functions. A protein consists of one or more polypeptide chains (a polypeptide chain being multiple amino acids joined together via condensation, producing a peptide bond). Different proteins have different shapes as the shapes are determined by the sequence of amino acids.
The functional groups are called aminos and carboxyls. The linkage type is by using a peptide bond. The primary function of protein is build and repairs the body.
3. Explain why the structure of a protein is important to how the protein functions. It’s important because it can make many complex shape and each shapes can have different functions.
Proteins are complex structures made up of chains of amino acids. Each protein has a different function such as enzymes to catalyze reactions or protein hormones to trigger certain functions of a cell. First let’s start with the most basic component of a protein: an amino acid. An amino acid is made up of a central carbon atom attached to a hydrogen atom, a carboxyl group, an amino group, and an R group which varies
A protein has multiple existing structures, these are the primary, secondary, tertiary and quaternary structures which occur progressively. A protein is essentially a sequence of amino acids which are bonded adjacently, and interact with one another in various ways depending on the R group that the amino acid contains. There are 20 different amino acids which are able to be arranged in any given order, thus giving rise to a potential 2.433x1018 (4.s.f) different combinations, and therefore interactions between the various amino acids.
They are made up of amino acids (consists of amino group, carboxyl group, hydrogen atom, and R group). Polypeptide bonds form between amino acids to form polypeptide chains. Amino acid sequence is primary protein structure. The secondary structure is the bonding pattern of the amino acids (e.g. helix, sheet, etc.). The tertiary structure consists of the domain, where the sheets or helixes fold on each other and become stable. The quaternary structure consists of several polypeptide chains that form advanced proteins such as human leukocyte
Proteins are made of amino acids, which are compounds built around a central carbon atom. Amino acids then join together through dehydration reactions. These are called peptide bonds. Many amino acids joined together are called polypeptides. A polypeptide becomes a protein when it folds into a three dimensional structure. This is the primary structure of a protein. The next structure in the hierarchy is the secondary structure. Secondary structures can either form alpha helixes, where an amino acid sequence forces the polypeptide to twist into a helical shape; or beta sheets, where an amino acid sequence forces the polypeptide into a zigzag shape. In the tertiary structure, the polypeptide folds several times on itself to form a more complex three dimensional shape. A quaternary structure is when two tertiary structures interact with each other. This is when a protein becomes a functional
B. Original diagram of the different levels of protein structure (i.e., primary, secondary, tertiary, and quaternary).
These proteins differ depending on their function in the cell, but often prevent misfolding of nascent protein, and assist in refolding of the misfolded proteins. Protein folding is dependent on the amino acid sequence within the polypeptide chain that is synthesized from the DNA strand in the ribosome.2 Upon release from the ribosome, the polypeptide chain undergoes a series of conformational changes based on the amino acid sequence to produce a functional protein structure. The assembled native protein is directed to the ER via vesicle
These new formations are held together by hydrogen bonds. The third level is the tertiary structure. The tertiary structure of a protein is a contorted secondary structure being twisted and folded all out of shape to form a 3-d complex. The type of bonding that holds these formations together are weak interactions such as hydrophilic, hydrophobic, ionic, and hydrogen bonds. These bonds are individually weak, but collectively strong. The forth level, which completes a protein, is quaternary structure, which occurs when two or more tertiary structures are joined together by polypeptide bonds.
Living organisms need proteins in their diet to help the body repair cells and make new ones. The basic structure of protein is a chain of amino acids. When two amino acids join together a dipeptide is formed but when more than two amino acids are joined together a polypeptide is formed. Proteins are made up of one or more polypeptides. Proteins are large molecules made up of the elements hydrogen, oxygen, nitrogen and carbon. Types of proteins include, structural proteins, contractile proteins, hormones, enzymes, antibodies and transport proteins. Some functions of proteins are movement in muscles, tendons and ligaments. Enzymes make biological reactions possible and hormones regulate metabolism. The protein shape determines its function.Proteins
For the second part of the experiment, one had to use the knowledge learn from viewing protein molecules in FirstGlance in Jmol to analyze the protein PDB ID: 4EEY. The analysis of this protein was done using the RSCB protein data bank (PDB) at (http://www.rcsb.org/pdb/home/home.do).2
The primary protein structure can be likened to a human chain in which each person is assumed to be an amino acid and their hands viewed as the carboxyl and amino groups. The person on one end of the chain, who has a free left hand, is assumed to be the free carboxyl group. The person on the other end, who has a free right hand, is assumed to be the free amino group. Everyone in this chain has a left hand linked to somebody’s right hand and a right hand linked to somebody else’s left hand forming peptide bonds. The heads and legs just like the side chains and hydrogens, do not take part in the linking.