Discussion of Results The primary goal of this laboratory is to correctly identify an unknown substance. To achieve this task, one may use various tests that reveal both chemical and physical properties of a substance. By comparing the results of a known substance and the unknown substance, one may eliminate alternative possibilities and more accurately predict the undisclosed compound. Furthermore, by performing these tests, data can be collected and verified regarding chemical and physical properties of the unknown. Understanding the chemical properties of a known substance aids one’s understanding of the unknown based on comparative analysis of the results of the tests.
Simple Distillation, Gas Chromatography: Preparation of Synthetic Banana Oil Introduction This experiment gave us the opportunity to work with a variety of new procedures as well as practice procedures that are new to us within the past few weeks of labs. Within the context of the scenario, we find that a distilling company that
Synthesis of Bromoacetanilide An ice bath was prepared in a large beaker and a small cotton ball was obtained. 0.5 g of acetanilide, 0.9 g of NaBr, 3mL of ethanol and 2.5 mL acetic acid was measured and gathered into 50mL beakers. In a fume hood, the measured amounts of acetanilide, NaBr, ethanol and acetic acid were mixed in a 25mL Erlenmeyer flask with a stir bar. The flask was plugged with the cotton ball and placed in an ice bath on top of a stir plate. The stir feature was turned on a medium speed. 7mL of bleach was obtained and was slowly added to the stirring flask in the ice bath. Once all the bleach was added, stirring continued for another 2 minutes and then the flask was removed from the ice bath and left to warm up to room temperature. 0.8mL of saturated sodium thiosulfate solution and 0.5mL of NaOH solution were collected in small beakers. The two solutions were added to the flask at room temperature. The flask was gently stirred. Vacuum filtration was used to remove the crude product. The product was weighed and a melting point was taken. The crude product was placed into a clean 25mL Erlenmeyer flask. A large beaker with 50/50 ethanol/water
Maci Mullins CHEM2130-001 10/9/2017 Stereochemistry of Bromine Addition to trans-Cinnamic Acid Statement of Problem: What is the stereochemistry for the bromination of trans-cinnamic acid, and how is it formed? Hypothesis: Two forms of stereochemistry can form product for the bromination of trans-cinnamic acid. Cis addition, also known as syn addition, is one way of forming product. This
Abstract: One mixture of two unknown liquid compounds and one mixture of two unknown solid compounds were separated, isolated, purified, and characterized by boiling point. Two liquid unknowns were separated, isolated, and purified via simple distillation. Then, the process of an acid-base extraction and washing were used to separate two unknown compounds into two crude compounds: an organic acid and a neutral organic compound. Each crude compound was purified by recrystallization, resulting in a carboxylic acid (RCO2H) and a pure organic compound (RZ). The resulting mass of the pure carboxylic acid was 1.688g with a percent recovery of 31.80%, the boiling range was 244-245 °C, and its density was 2.0879g/mL. The resulting mass of the pure organic solid was 2.4902g with a percent recovery of 46.91%, the boiling range was 52.0-53.4°C, and its density was 1.5956 g/mL.
Introduction The purpose of this experiment is to practice common organic laboratory techniques inside the lab to get one oriented to the basic methods of procedure that can be used for later experiments. This experiment involves the separation of benzoic acid from a more crude form, consisting of benzoic acid, methyl orange, a common acid/base indicator, and cellulose, a natural polymer of glucose (Huston, and Liu 17-24). The technique that is used to perform this separation is called extraction. Extraction is a systematic process of separating mixtures of compounds, taking advantage of the affinity differences of compounds to separate them (Padias 128-37). This technique recognizes the principle that “like dissolves in like,” that is,
Distillation Purpose: The purpose of this experiment was to perform a simple distillation as well as a fractional distillation and to determine the composition of an unknown solution using fractional distillation. Procedure: First, the simple distillation apparatus was set up. An oil bath was placed on a hot
Isolation & Identification of the Major Constituent of Clove Oil with Steam Distillation The purpose of this laboratory experiment was to isolate and characterize clove oil in order to understand how to isolate organic compounds with high boiling points, how to perform and interpret qualitative tests for organic compound functionality, and to continue to learn how to perform and interpret IR spectrometry. Steam distillation was used in order to prevent the organic compound from decomposing at temperatures approaching the compound's boiling point.
Name CHE 173 Sec # January 25, 2005 Experiment 36: Determination of the Structure of a Natural Product in Anise Oil
In the first part of the experiment trans-cinnamic acid began to melt rapidly at 133 °C and had completely liquefied at 135.9 °C. Urea began to melt rapidly at 133 °C, just as the trans-cinnamic acid, but had completely liquefied at 134.7 °C. Both urea and trans-cinnamic acid had true
Experiment 7- Isolation of the Major Component of Clove Oil Pre-Lab Questions: 1.) Briefly explain the concept of steam distillation. What is the difference between a simple distillation and a steam distillation? When a mixture of two immiscible liquids are distilled it is referred to as codistillation. This process is referred to as steam distillation when one of the liquids is water. This distillation is used to separate organic liquids from natural products and reaction mixtures in which the final product results in high boiling residues such as tars, inorganic salts, and other relatively involatile components. It is useful in isolating volatile oils from various parts of plants and not useful in the final purification of a
Synthesis of Isopentyl Acetate (Banana Oil) Using a Fischer Esterification Reaction Zhenshu Wang (Stan) TA: Aaron League September 23, 2012 Purpose: The purpose of the experiment was to perform the acid-catalyzed Fischer Esterification of acetic acid and isopentyl alcohol to form isopentyl acetate, or banana oil, which is used in flavor industries. The equilibrium
Fischer Esterification of (1,3-Dimethylbutyl) Acetate from 4-Methyl-2-Pentanol Alison Evans Anne Richards TA: Dylan Kahl Tuesday 11:30am - 2:20pm 81807 Abstract: An ester was synthesized during an organic reaction and identified by IR spectroscopy and boiling point. Acetic acid was added to 4-methyl-2-pentanol, which was catalyzed by sulfuric acid. This produced the desired ester and water. After the ester was isolated a percent yield of 55.1% was calculated from the 0.872 g of ester recovered. This quantitative error was most likely due to product getting stuck in the apparatus. The boiling point of the ester was 143° C, only one degree off from the theoretical boiling point of the ester 1,3-dimethylbutyl, 144 ° C. The values of the
For this experiment, Alcohol D and Acid 2 reacted in the presence of concentrated sulfuric acid, resulting in a colorless solution with brown layer on top. After washes with sodium bicarbonate and brine, the pale-yellow liquid product was dried and then distilled. Distillation resulted in two colorless fractions, the second of which had a boiling point of 69-70 ˚C. This boiling point is unrealistic for any compound obtained in this experiment, so it was not used in identifying the product. After distillation, both fractions were spectroscopically analyzed. The IR and NMR spectra obtained for both fraction were identical, meaning both fractions contained exactly the same substance. Both fractions also smelled the same, like piña colada, therefore confirming this conclusion. This outcome also meant that the amount of product synthesized was 5.7393 g.
Vidallon, Mark Louis P. Date Performed: February 20, 2012 CHEM44.1 2L Date Submitted: March 12, 2012 MIXED-ALDOL CONDENSATION Synthesis of Cinnamaldehyde I. Introduction Cinnamaldehyde, cinnamic aldehyde or 3-phenyl-2-propenal is the major constituent of cinnamon oil, extracted from several species of Cinnamomum (C. verum, C. burmanii, C. cassia), under the family Lauraceae, a group of evergreen trees. Cinnamon bark (particularly C. verum) yields 0.4-0.8% oil, which contains 60-80% cinnamaldehyde, 4-5% sesquiterpenoids (α-humulene, β-caryophyllene, limonene and others), eugenol, cinnamyl acetate, eugenol acetate, cinnamyl alcohol, methyl eugenol, benzaldehyde, benzyl benzoate, cuminaldehyde, monoterpenes (linalool, pinene,