However, the rate of reaction only increases for a certain period of time until there is lesser substrate molecules than the enzyme molecules. The increase of enzyme concentration does not have effect if there are lesser substrate molecules than enzyme molecules initially.
However if the temperature exceeds the optimum temperature the enzyme becomes denatured. This is because there is too much energy causing the enzyme molecules to vibrate causing the bonds maintaining their tertiary structure to break. The enzyme unravels causing the shape of the active site to change so it can no longer fit with the substrate.
These results show how temperature of extreme high, or low affects enzyme activity. The highest rate of enzyme activity occurred at 37 Cº. Anything that was hotter or cold than 37 Cº slowed the reaction rate. As I thought, 100 degrees would denature the enzyme, and that was the case. The data provided shows exactly what temperatures enzymes work best, and worst. The objective was achieved as we discovered the different reaction rates under different temperatures. The results are reliable, as we know enzymes do not work well when under extreme heat or denaturation occurs. What I learned in this experiment was that enzymes don’t work well under cold temperatures because they tend to move slower. My hypothesis did not quite match, because I thought they work best at lower temperatures.
Most enzymes work best at body temperature, higher temps will cause the enzyme to no longer work properly
4) It is likely that the rate of reaction would increase as substrate is added. It will probably follow classical michaelis-menten kinetics. See the attached picture for an example of this scheme for the rates (the picture of the hyperbola is the rate vs. the substrate concentration).
Enzyme can be defined as a protein molecule that is a biological catalyst. (Ophardt, 2003) Catalyst increases the speed of a reaction but does not have to use anything to help increase the speed. An enzyme can be determined by their properties. Enzyme are a substrate specific, substrate connects to an enzyme at the location of an active site. Enzyme is not used in a reaction and enzyme function in a good condition at the optimum temperatures and pH. (Ahmez2005) Peroxidase is a type of enzyme which is used in the experiment.
Enzymes are specific-type proteins that act as a catalyst by lowering the activation energy of a reaction. Each enzyme binds closely to the substrate; this greatly increases the reaction rate of the bounded substrate. Amylase enzyme, just like any other enzyme, has an optimum PH and temperature range in which it is most active, and in which the substrate binds most easily.
If temperature of the water(enzyme environment) is increased to 35°C, then the enzyme activity will
Enzymes are a key aspect in our everyday life and are a key to sustaining life. They are biological catalysts that help speed up the rate of reactions. They do this by lowering the activation energy of chemical reactions (Biology Department, 2011).
“Enzymes are proteins that have catalytic functions” [1], “that speed up or slow down reactions”[2], “indispensable to maintenance and activity of life”[1]. They are each very specific, and will only work when a particular substrate fits in their active site. An active site is “a region on the surface of an enzyme where the substrate binds, and where the reaction occurs”[2].
Hypothesis: I believe the rate of reaction will speed up as the temperature increases until it reaches about 37oC, which is the body temperature, where it will begin to slow down and stop reacting. I believe this will occur because enzymes have a temperature range at which they work best in and once the temperature goes out of this range the enzyme will stop working.
As the temperature increases, so will the rate of enzyme reaction. However, as the temperature exceeds the optimum the rate of reaction will decrease.
Enzymes are proteins that act as catalysts and help reactions take place. In short, enzymes reduce the energy needed for a reaction to take place, permitting a reaction to take place more easily. Some enzymes are shape specific and reduce the energy for certain reactions. Enzymes have unique folds of the amino acid chain which result in specifically shaped active sites (Frankova Fry 2013). When substrates fit in the active site of an enzyme, then it is able to catalyze the reaction. Enzyme activity is affected by the concentrations of the enzymes and substrate present (Worthington 2010). As the incidence of enzyme increases, the rate of reaction increases. Additionally, as the incidence of substrate increases so does the rate of reaction.
The hypothesis is as the substrate concentration has an increase so will the reaction of velocity if the amount of enzyme is kept constant.
Enzymes are biological catalysts, which speed up the rate of reaction without being used up during the reaction, which take place in living organisms. They do this by lowering the activation energy. The activation energy is the energy needed to start the reaction.