An enzyme is a macromolecule that acts as a catalyst, a chemical agent that speeds up a reaction without being consumed by the reaction (Coleman 2016). With different pHs and temperatures the enzyme’s rate of reaction can drastically alter. For example, peroxidase, a type of enzyme that is found in various plant tissues, was used to look into the reactions of Guaiacol + H2O2 -> Tetraguaiacol +2H2O mixed into test tubes. Following the extract of the enzyme the process of standardization was taking place in order to determine the amount of extract of peroxidase to use. Then data about the production of tetraguaiacol absorbance were recorded into a scatter plot and tables. Factors that were recorded in 15 second increments were the amount of extract, pH values, and boiling rate of reactions altered. The 0.5 mL had a lower change of reaction rate than the control while the 2.0 mL also had a lower rate of reaction. Then for boiling it seems that it hit a point of denaturation, because of the slope reached positive at first, then it had a negative slope, which lead to the process of breaking down hydrogen bonds. Containing the data about the three factors used for peroxidase is important, for results may alter or would not occur, due to the lack of optimal conditions met (Barron 2014).
Introduction
Metabolism is the totality of an organism’s chemical reaction, which contains catabolic and anabolic pathways (Coleman, 2016). It is important to an organism for it allows growth,
(Click on the Save a Copy button on the panel above to save your report)
Lab six requires students to observe the effects of pH and enzyme concentration on catecholase activity. Enzymes are organic catalysts that can affect the rate of a chemical reaction depending on the pH level and the concentration of the enzyme. As pH comes closer to a neutral pH the enzyme is at its greatest effectiveness. Also at the absorbance of a slope of 0.0122 the enzyme is affected greatly. The pH effect on enzymes can be tested by trying each pH level with a pH buffer of the same pH as labeled as the test tube and 1mL of potato juice, water, and catechol. This is all mixed together and put in the spectrophotometer to test how much is being absorbed at 420nm. As the effect on enzyme concentration can be tested almost the same way. This part of the exercise uses different amounts of pH 7-phosphate buffer and potato juice, and 1mL of catechol mixed together in a test tube. Each substance is put in the spectrophotometer at a wavelength set tot 420nm. The results are put down for every minute up to six minutes to see how enzyme concentration affects reaction rate. The results show that the pH 8 (0.494) affects the enzyme more than a pH of 4 (0.249), 6 (0.371), 7 (0.456), and 10 (0.126). Also the absorbance is greatest at a slope of 0.0122 with test tube C that has more effect on the reaction rate, than test tube A, B, and D.
Metabolism is a chemical process that converts fuel from food into energy needed for the body’s activities. For example, thinking, running and jumping etc. are all an example of the bodies activities.
The purpose of this experiment is to learn the effects of a certain enzyme (Peroxidase) concentration, to figure out the temperature and pH effects on Peroxidase activity and the effect of an inhibitor. The procedure includes using pH5, H202, Enzyme Extract, and Guaiacol and calibrating a spectrophotometer to determine the effect of enzyme concentration. As the experiment continues, the same reagents are used with the spectrophotometer to determine the temperature and pH effects on Peroxidase activity. Lastly, to determine the effect of an inhibitor on Peroxidase, an inhibitor is added to the extract. It was found that an increase in enzyme concentration also caused an increase in the reaction rate. The reaction rate of peroxidase increases at 40oC. Peroxidase performed the best under pH5 and declined as it became more basic. The inhibitor (Hydroxy-lamine) caused a decline in the reaction rate. The significance of this experiment is to find the optimal living conditions for Peroxidase. This enzyme is vital because it gets rid of hydrogen peroxide, which is toxic to living environments.
The role of an enzyme is to catalyse reactions within a cell. The enzyme present in a potato (Solanum Tuberosum) is catechol oxidase. In this experiment, the enzyme activity was tested under different temperature and pH conditions. The objective of this experiment was to determine the ideal conditions under which catechol oxidase catalyses reactions. In order to do this, catechol was catalyzed by catechol oxidase into benzoquinone at diverse temperatures and pH values. The enzyme was exposed to its new environment for 5 minutes before the absorbance of the catechol oxidase was measured at 420 nm using a spectrophotometer. The use of a spectrophotometer was crucial for the collection of data in this experiment. When exposed to hot and cold temperatures, some enzymes were found to denature causing the activity to decrease. Similarly, when the pH was too high or low, then the catechol oxidase enzyme experienced a significant decrease in activity. It can be concluded after completing this experiment that the optimal pH for catechol oxidase is 7 and that the prime temperature is 20º C. Due to the fact that the catechol oxidase was only tested under several different temperatures and pH values, it is always possible to get a more precise result by decreasing the increments between the test values. However, our experiment was able to produce accurate results as to the
Abstract: Enzymes, catalytic proteins that at as catalysis which makes the process of chemical reactions more easily. There are two main factors that actually affects enzymes and their functions which are temperature and pH. Throughout this experiment, the study how pH and peroxidase affects each other and the enzyme was made. The recordings of how the enzymes responded when it was exposed to four different pH levels to come up with an optimum pH which was predicted in the hypothesis and the IRV at the end.
Enzymes are a key aspect in our everyday life and are a key to sustaining life. They are biological catalysts that help speed up the rate of reactions. They do this by lowering the activation energy of chemical reactions (Biology Department, 2011).
Introduction: Cellular respiration and fermentation are used in cells to generate ATP. All cells in a living organism require energy or ATP to perform cellular tasks (Urry, Lisa A., et al. , pg. 162). Since energy can not be created (The first law of thermodynamics) just transformed, the cell must get its energy from an outside source (Urry, Lisa A., et al. , pg.162). “Totality of an organism’s chemical reactions is called metabolism” (Urry, Lisa A., et al., pg. 142). Cells get this energy through metabolic pathways, or metabolism. As it says in Campbell biology, “Metabolic pathways that release stored energy by breaking down complex molecules are called catabolic pathways” (Urry, Lisa A., et al. pg.
(Click on the Save a Copy button on the panel above to save your report)
“Enzymes are proteins that have catalytic functions” [1], “that speed up or slow down reactions”[2], “indispensable to maintenance and activity of life”[1]. They are each very specific, and will only work when a particular substrate fits in their active site. An active site is “a region on the surface of an enzyme where the substrate binds, and where the reaction occurs”[2].
Enzymes are high molecular weight molecules and are proteins in nature. Enzymes work as catalysts in biochemical reactions in living organisms. Enzyme Catecholase is found on in plants, animals as well as fungi and is responsible for the darkening of different fruits. In most cases enzymatic activities are influenced by a number of factors, among them is temperature, PH, enzyme concentration as well as substrate concentration (Silverthorn, 2004). In this experiment enzyme catecholase was used to investigate the effects of PH and enzyme concentration on it rate of reaction. A pH buffer was used to control the PH, potato juice was used as the substrate and water was used as a solvent.
To study the effects of temperature, pH, enzyme concentration, and substrate concentration there were certain steps that were followed in order to conduct this experiment. Each factor had a separate procedure to follow to find how each had a different effect on the enzyme.
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or
Enzymes are an important part of all metabolic reactions in the body. They are catalytic proteins, able to increase the rate of a reaction, without being consumed in the process of doing so (Campbell 96). This allows the enzyme to be used again in another reaction. Enzymes speed up reactions by lowering the activation energy, the energy needed to break the chemical bonds between reactants allowing them to combine with other substances and form products (Campbell 100). In this experiment the enzyme used was acid phosphates (ACP), and the substrate was p-nitrophenyl phosphate.
“Metabolism is the set of chemical reactions that happen in living organisms to maintain life. These processes allow organisms to grow and reproduce, maintain their structures, and respond to their environments” (Metabolism). Metabolism breaks down the food that we eat, transforming it into energy for our bodies. Metabolism is broken down into two categories Anabolism and Catabolism, which help aid in the chemical reaction process. Specific proteins in the body control the chemical reactions of metabolism, and each chemical reaction is coordinated with other body functions (Dowshen). Metabolism is a constant process that begins when we're born and ends when we die. It is a vital process for all life not just humans, and