118℃ and 118-119℃, and 126℃ respectively), when adding heat to the solution, both reactants, 1-butanol and ethanoic acid, will boil and turn into a vapour before the ester, at approximately 118℃. Therefore, their vapour will pass through the Liebig condenser and be condensed back into liquid form to be collected as a distillate before the ester. Only when the temperature reaches approximately 126℃ will the ester undergo this same process and be distilled to obtain an ester distillate. However, as the ester is distilled after the reactants, its distillate can only be collected later as a mixture with the distillates of the reactants. Moreover, as the density of 1-butanol and the ester, 1-butyl ethanoate is very similar (i.e. 0.81gmL-1 and 0.88gmL-1 respectively), it will also be hard to identify the ester layer. Hence, if a distillation set up were used for the production and collection of the ester, isolation of ester as it forms would not be
The purpose of this experiment is to prepare isopentyl acetate by direct esterification of acetic acid with isopentyl alcohol. After refluxing there is an isolation procedure where excess acetic acid and remaining isopentyl alcohol are easily removed by extraction with sodium bicarbonate and water. The ester is then purified by simple distillation and the IR is then obtained.
The products of interest within this experiment are 2-methyl-1-butene and 2-methyl-2-butene from sulfuric acid and phosphoric acid catalyzed dehydration of 2-methyl-2-butanol. The reaction mixture was then separated into its separate alkene components by steam distillation and then analyzed by gas chromatography (GC), Infrared Radiation (IR) spectroscopy, and Nuclear Magnetic Resonance (NMR) imaging. Gas chromatography is an analytical technique that is able to characterize if specific compounds exist in a reaction mixture, even if they are in low quantities, assess how much of a compound exists within a reaction mixture relative to other components within the sample, and determine the purity of an isolated product. In the case of this experiment, gas chromatography is used to analyze how pure the alkene reaction sample was and if any remnants of impurities or 2-methyl-2-butanol remained in the sample after isolation of alkene components.
A pre-weighed (0.315g) mixture of Carboxylic acid, a phenol, and neutral substance was placed into a reaction tube (tube 1). tert-Butyl methyl ether (2ml) was added to the tube and the solid mixture was dissolved. Next, 1 ml of saturated NaHCO3 solution was added to the tube and the contents were mixed separating the contents into three layers. Once this was completed
The goal of this experiment was to synthesize aspirin. In this experiment aspirin, also known as acetylsalicylic acid, was synthesized from salicylic acid and acetic anhydride. In the reaction the hydroxyl group on the benzene ring in salicylic acid reacted with acetic anhydride to form an ester functional group. This method of forming acetylsalicylic acid is an esterification reaction. Since this esterification reaction is not spontaneous, sulfuric acid was used as a catalyst to initiate the reaction. After the reaction was complete some unreacted acetic anhydride and salicylic acid was still be present in the solution as well as some sulfuric acid, aspirin, and acetic acid. Crystallization, which uses the principle of
A small beaker was placed under the arm of the distillation head to catch the distillate. Foil was wrapped around the neck of the round-bottomed flask and a wet paper towel was wrapped around the arm of the distillation head to create a condenser. The flask was heated gently so that the distillate dropped at a rate of two drops per minute. The temperature was recorded as every drop was collected. The distillation began at around 55.0 ℃. The distillation was stopped after 29 drops were collected to prevent the solution from being distilled to dryness. See attached data. The known boiling point of 1-butanol is 117.5 ℃ (Lemonds). The known boiling point of 1-propanol is 97 ℃ (Thiyagarajan). The known boiling point of acetone is 56 ℃ (Forss). The known boiling point of 2-butanone is 79.6 ℃ (Jiang). For unknown #3 the boiling point of the first substance seemed to be around 56 ℃ and the boiling point of the second substance seemed to be around 111 ℃. Therefore unknown #3 seemed to be a mixture of acetone and 1-butanol.
In this experiment, the Fischer Esterification of an unknown acid and an unknown alcohol was used to prepare an unknown ester. Sulfuric acid was used as a catalyst in the reaction which then was put under reflux. After cooling, the pH of the solution was raised to approximately 8 using sodium carbonate. Diethyl ether was added, then the aqueous layer was removed and the organic layer was washed with sodium chloride. The aqueous layer was removed again and sodium sulfate was added. The unknown product was then identified using gas chromatography (GC) to obtain the retention time.
The Hydroxyl group on alcohols relates to their reactivity. This concept was explored by answering the question “Does each alcohol undergo halogenation and controlled oxidation?” . Using three isomers of butanol; the primary 1-butanol, the secondary 2-butanol and the tertiary 2-methyl-2-propanol, also referred to as T-butanol, two experiments were performed to test the capabilities of the alcohols. When mixed with hydrochloric acid in a glass test tube, the primary alcohol and secondary alcohols were expected to halogenate, however the secondary and tertiary ended up doing so. This may have been because of the orientation of the Hydroxyl group when butanol is in a different
Both Aspirin and the Unknown are soluble in dichloromethane, due to their non-polar characteristics. To separate the two components, sodium bicarbonate was added (see figure 3). Sodium bicarbonate reacted with aspirin and converted it to a salt, also forming water and carbon dioxide. It was observed that the solution "fizzed" when this reaction took place, showing the release of carbon dioxide. The newly formed salt then traveled to an aqueous layer where it was soluble, while the unknown remained in the dichloromethane layer. The two layers were then separated. To collect an aspirin solid, the combination of the addition of HCl and the process of vacuum filtration helped to break down the salt and form a solid. Then the solid was placed in the Fisher Scientific Biotemp Oven to dry it to a constant mass of 0.091 g, 32.97% of the total composition. The
The filter paper, holding the aspirin crystals, was removed from the funnel and was left to dry before being weighed. Once the aspirin crystals were weighed, the theoretical yield and the percent yield of the experiment were calculated. The procedure was repeated once more using the same steps.
Results: No substantial qualitative data was collected, except that the original reaction mixture turned a purple color. Upon the addition of anise oil and heat, the reaction mixture turned a brown color. And with the addition of NaHSO3 the mixture turned a white color. The mass of the final product sample was measured to be 0.08g (see Calculation 1). The melting point range for this sample was 172.8-185.4ºC in Trial 1 and 171.6-185.2ºC in Trial 2 (see Table 1). The IR spectrum of anise oil can be found attached. Peaks appear to exist at 3022.86, 3002.41, 2957.58, 2933.88, 2912.63, 2834.94, and 2723.19 (cm-1). Another set of peaks appear to exist at 1608.06, 1510.55, 1464.73, 1441.16, 1306.3, 1283.06, 1247.18, 1174.78, 1036.26, 964.58, 839.29, and 787.03 (cm-1). No other significant quantitative results were collected.
Purpose: The purpose of the experiment was to perform the acid-catalyzed Fischer Esterification of acetic acid and isopentyl alcohol to form isopentyl acetate, or banana oil, which is used in flavor industries. The equilibrium of the reaction was changed by adding an excess amount of acetic acid. The reaction was refluxed and product was purified by extraction and distillation. Isopentyl acetate was analyzed by infrared spectroscopy and 1H NMR spectroscopy.
An ester was synthesized during an organic reaction and identified by IR spectroscopy and boiling point. Acetic acid was added to 4-methyl-2-pentanol, which was catalyzed by sulfuric acid. This produced the desired ester and water. After the ester was isolated a percent yield of 55.1% was calculated from the 0.872 g of ester recovered. This quantitative error was most likely due to product getting stuck in the apparatus. The boiling point of the ester was 143° C, only one degree off from the theoretical boiling point of the ester 1,3-dimethylbutyl, 144 ° C. The values of the
The theoretical yield of tristearin was calculated using the limiting reagent, triolein. The original mass of triolein, or olive oil, was 0.380 g, and the theoretical yield of tristearin was 0.383 g. The final mass of the recovered product was 0.374 g, which is lower than the theoretical yield. By using both the theoretical yield and the actual yield calculated above, the percent yield was 97.7%. If the final product was tristearin then this would have been a good percent yield. However, the final product was not tristearin. The melting point of the final product was determined to be less than 0.0 °C, because the product was a viscous solution after cooling in an ice bath. This is much lower than the known literature value for tristearin,
The purpose of this lab was to synthesize the ester isopentyl acetate via an acid catalyzed esterification (Fischer Esterification) of acetic acid with isopentyl alcohol. Emil Fischer and Arthur Speier were the pioneers of this reaction referred to as Fischer Esterification. The reaction is characterized by the combining of an alcohol and an acid (with an acid catalyst) to yield and ester plus water. In order to accomplish the reaction, the reactants were