George Shi Osmosis Lab Report
Abstract:
The purpose of this lab was to measure diffusion of molecules through a semipermeable membrane (College Entrance Examination Board, 2003). The bags, emerged in distilled water, with different moles of sucrose mixed with water were measured by mass to see how much they had changed. The water left in different amounts, during the thirty minutes the experiment was conducted, out of the pores depending on the molarity of the sucrose inside the bags. The bags with the lower concentrations of particles than its environment lost mass while the bags with equal concentrations of particles stayed the same and the bags with higher concentrations of particles had increased mass. Introduction:
Due to their constant motion, molecules have thermal energy and one results of this motion is osmosis (Reece, Urry, Cain, Wassermann, Minorsky, and Jackson, 130). Osmosis occurs when particles move through a selectively permeable membrane will not stop until the system it is in reaches dynamic equilibrium, which is when the concentration of particles is equal throughout and there is no net movement between the areas (Karp, 2013). In this experiment, the process of osmosis was observed when different amounts of the same solute was placed in an environment of distilled water. If the two solutions have the same solute concentration, the solutions are isotonic and no osmosis will occur (Karp, 2013). If the solutions differ in concentration, the area
Diffusion is defined as the movement of molecules from an area of high concentration to an area of low concentration. The diffusion of water molecules through a semi-permeable(selectively permeable) membrane is osmosis. Semi-permeable means that some molecules can move through the membrane while others can not. Diffusion and Osmosis are passive forms of transport requiring no energy. Active Transport utilizes energy in the form of ATP. Water is a solvent that can dissolve a number of substances more than any other substance. Wherever water goes, through the ground or a body, it takes along valuable molecules. Water’s chemical composition causes it to be attracted to many different molecules and be attracted so strongly it disrupts the forces and dissolves it. Water can pass through the semipermeable membrane without any help but can change the solution, on the other side of the cell membrane, depending on how much it diffuses in and out.
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
Osmosis can be defined as the force that drives the movement of water due to differences in solute concentration. The process involves the random movement of molecular water molecules through a semi-permeable membrane from regions of higher concentration to regions of lower concentration until both regions equal out (Ledbetter 2013, Ness 2013). Polar substances such as glucose and salts cannot travel through the cell membrane, which
7. Explain how incubation plant tissues in a series of dilutions of sucrose can give an
The lab for this paper was conducted for the topic of osmosis, the movement of water from high to low concentration. Five artificial cells were created, each being filled with different concentrated solutions of sucrose. These artificial cells were placed in hypertonic, hypotonic, or isotonic solutions for a period of 90 min. Over time, the rate of osmosis was measured by calculating the weight of each artificial cell on given intervals (every 10 minutes). The resulting weights were recorded and the data was graphed. We then could draw conclusions on the lab.
In this experiment, we will investigate the effect of solute concentration on osmosis. A semi‐permeable membrane (dialysis tubing) and sucrose will create an osmotic environment similar to that of a cell. Using different concentrations of sucrose (which is unable to cross the membrane) will allow us to examine the net movement of water across the membrane.
Osmosis is the passive movement of water from an area of low solute concentration to an area of high solute concentration, normally across a membrane which prevents the movement of solvent. This is a process by which materials may move into, out of, or within cells. Osmosis doesn’t depend on energy provided by living organisms but is affected by the properties of the cell membrane. The rate of osmosis is dependent on such factors as temperature, pressure, molecular properties such as size and mass, and the concentration gradient. In osmosis, the relationship between a solute’s concentration outside of cell and inside of a cell is described in terms of the tonicity of the solution outside of the cell. A cell is in a hypotonic solution when the solute is more concentrated inside the cell and therefore water moves into the cell. In this solution the cell swells as water enters, this may continue until it ruptures or hemolyzes. In the reverse condition, the cell is in a hypertonic solution
The objective of this experiment is to develop an understanding of the molecular basis of diffusion and osmosis and its physiological importance. Students will analyze how solute size and concentration affect diffusion across semi-permeable membranes and how these processes affect water potential. Students will also calculate water potential of plant cells.
Osmosis is a process in which molecules in a solvent pass across a semipermeable membrane into a more concentrated solution from a less concentrated one, attempting to make both sides isotonic or equal to each other. Isotonic can also be described as an equilibrium, where there is no net movement of the molecules. Osmosis is relevant in everyday life whether the general population is aware of it or not. It could be as simple as sitting in the pool too long and getting pruney fingers or as complex as a cholera infection in the intestinal cells that does not allow the intestinal cells
Diffusion is the movement of molecules from a region of higher concentration to a region of lower concentration. The rate at which molecules diffuse can be determined by the relationship of molecular weight and that rate of diffusion through a membrane. Hypothesis of this experiment is that the fluid with higher molecular weight will diffuse at a slower rate and distance.
Diffusion is the transfer of molecules from an area that has a higher concentration to an area that has a lower concentration. Osmosis is the diffusion of water. The purpose of this experiment was to study the process of osmosis. In order to test osmosis, eggs that had been soaking in vinegar were taken and placed in four beakers of solution with different levels of glucose. Using this experiment we were able to determine the rate of osmosis of different solutions, with various amounts of glucose, through eggs. In the results of this lab it was found that the eggs were either hypertonic or hypotonic and that the
Osmosis is a special type of diffusion where water molecules move down a concentration gradient across a cell membrane. The solute (dissolved substance) concentration affects the rate of osmosis causing it either to speed the process up or slow it down. Based on this, how does different concentrations of sucrose affect the rate of osmosis? If sucrose concentration increases in the selectivity-permeable baggies, then the rate of osmosis will increase.
Cells are always in motion, energy of motion known as kinetic energy. This kinetic energy causes the membranes in motion to bump into each other, causing the membranes to move in another direction – a direction from a higher concentration of the solution to a lower one. Membranes moving around leads to diffusion and osmosis. Diffusion is the random movement of molecules from an area of higher concentration to an area of lower concentration, until they are equally distributed (Mader & Windelspecht, 2012, p. 50). Cells have a plasma membrane that separates the internal cell from the exterior environment. The plasma membrane is selectively permeable which allows certain solvents to pass through
All cells contain membranes that are selectively permeable, allowing certain things to pass into and leave out of the cell. The process in which molecules of a substance move from an area of high concentration to areas of low concentration is called Diffusion. Whereas Osmosis is the process in which water crosses membranes from regions of high water concentration to areas with low water concentration. While molecules in diffusion move down a concentration gradient, molecules during osmosis both move down a concentration gradient as well as across it. Both diffusion, and osmosis are types of passive transport, which do not require help.
Osmosis is a special type of diffusion. It is the diffusion of water across a semipermeable membrane which is a membrane that is freely permeable to water but is not freely permeable to solutes, the water moves from a dilute solution to a more concentrated solution (Karp, 2010). Both diffusion and osmosis are passive transport, energy is not used in the transport. In osmosis water moves across a membrane toward the solution of greater concentration, because the concentration of water is lower there (Martini and Bartholomew., 2007).