We All Need Some Cellular Respiration Essay

526 Words3 Pages
Every living thing needs cellular respiration to survive. Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen. This process happens through three distinct operations which are glycolysis, the Krebs cycle, and the electron transport chain. Throughout these cycles, our bodies turn oxygen and glucose into carbon dioxide, water, and energy. Although this system seems simple enough, cellular respiration can not take place in just one step because all of the energy from glucose would be released at once, most of it being lost in the form of light and heat. All this plays a very important role in our lives and without it, organisms would cease to exist. The first…show more content…
The overall process of glycolysis is so fast that cells can produce thousands of ATP molecules in just a few milliseconds. Glycolysis is followed by the Krebs cycle, however, this stage does require oxygen and takes place in the mitochondria. During the Krebs cycle, pyuvic acid is broken down into carbon dioxide in a series of energy-extracting reactions. This begins when pyruvic acid produced by glycolysis enters the mitochondria. As the cycle continues, citric acid is broken down into a 4-carbon molecule and more carbon dioxide is released. Then, high-energy electrons are passed to electron carriers and taken to the electron transport chain. All this produces 2 ATP, 6 NADH, 2 FADH, and 4 CO2 molecules. The third and final step in cellular respiration is the electron transport chain which takes place in the inner mitochondrion membrane. This process uses the high-energy electrons from the Krebs cycle to convert ADP into ATP. These high-energy electrons are first passed along the electron transport chain. Every time 2 electrons travel down this chain, their energy is used to transport hydrogen ions (H+) across the membrane. These H+ ions escape through channels into an ATP synthase. This causes it to spin, transforming the ADP into ATP. On average, each pair of high-energy electrons that moves down the electron
Open Document