
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
Please answer part A, B and C
asking part D and E in another question
![1) A ball of mass, m = 2.50 kg, floats on a pool of fluid, L-1.00 m wide. It is attached to supports
at either end of the pool by springs, as shown in Fig.-1. The left spring has a spring constant,
A = 65.0 N/m, and equilibrium length, L1-0.600 m. The spring on the right has a spring
constant, k2-75.0N/m, and equilibrium length, L20.800m
L = 1.00 m
ki, Li
Figure 1 -A ball of mass, m = 2.50 kg, floats on a pool of fluid, L = 1.00 m wide. It is
attached to supports at either end of the pool by springs. The left spring has a spring constant,
A = 65.0 N/m, and equilibrium length, L1 = 0.600 m. The right spring has a spring constant.
ka = 75.0 N/m, and equilibrium length, L2 = 0.800 m. (Not to scale.)
a) The ball is initially at rest at position, x - d. It's then pulled to the center between the two
supports at 0.500 m, and let go. How long after it's let go does it take to return to
x- d? (Neglect the drag of the fluid.)
Supposing we now consider that the fuld exerts a drag force on the ball of fD
b 20.0kg/s. If the ball is again pulled to the center at aand let go, now how long does
it take to return to the position, x = d?
b)
-bu, where
c) In Part b, once the ball gets back to the position, x - d, what's the furthest it will get from
r-d after that?
d) Supposing the drag coefficient is changed to b = 40.0 kg/s. If the ball is again pulled to the
center at and let go, now how long does it take to return to the position, x-d?
2
e) Going back to Part b with the drag coefficient given by b -20.0 kg/s, supposing the
ball is initially at rest at x - d. But then it's driven with a driving force given by
F (50.0N) cos [(8.00s) ]. After a long time has passed, how fast will the ball be traveling
whenever it passes through the point where x?](https://content.bartleby.com/qna-images/question/148f708e-8a5d-4fc9-84e5-edc45b43bb5d/6fc45789-aa80-411b-91e1-818f1102162e/i294r.png)
Transcribed Image Text:1) A ball of mass, m = 2.50 kg, floats on a pool of fluid, L-1.00 m wide. It is attached to supports
at either end of the pool by springs, as shown in Fig.-1. The left spring has a spring constant,
A = 65.0 N/m, and equilibrium length, L1-0.600 m. The spring on the right has a spring
constant, k2-75.0N/m, and equilibrium length, L20.800m
L = 1.00 m
ki, Li
Figure 1 -A ball of mass, m = 2.50 kg, floats on a pool of fluid, L = 1.00 m wide. It is
attached to supports at either end of the pool by springs. The left spring has a spring constant,
A = 65.0 N/m, and equilibrium length, L1 = 0.600 m. The right spring has a spring constant.
ka = 75.0 N/m, and equilibrium length, L2 = 0.800 m. (Not to scale.)
a) The ball is initially at rest at position, x - d. It's then pulled to the center between the two
supports at 0.500 m, and let go. How long after it's let go does it take to return to
x- d? (Neglect the drag of the fluid.)
Supposing we now consider that the fuld exerts a drag force on the ball of fD
b 20.0kg/s. If the ball is again pulled to the center at aand let go, now how long does
it take to return to the position, x = d?
b)
-bu, where
c) In Part b, once the ball gets back to the position, x - d, what's the furthest it will get from
r-d after that?
d) Supposing the drag coefficient is changed to b = 40.0 kg/s. If the ball is again pulled to the
center at and let go, now how long does it take to return to the position, x-d?
2
e) Going back to Part b with the drag coefficient given by b -20.0 kg/s, supposing the
ball is initially at rest at x - d. But then it's driven with a driving force given by
F (50.0N) cos [(8.00s) ]. After a long time has passed, how fast will the ball be traveling
whenever it passes through the point where x?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 7 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please hand writing answerarrow_forwardTheoretically, does a stronger person have any advantage in a water balloon throwing contest? why or why notarrow_forwardIn both cases shown in the diagram below, a block is floating at rest in a liquid. The liquids in the two beakers have the same density, that is, PA = PB. Both blocks have 55% of their volume below the surface, but the volumes of the blocks are not the same. Find the mass m2 in terms of V1, V2, and m1. Block 1 Block 2 mi m2 РА Рв m2 = m1 (等) m2 = m1 (V2–V1) m2 = m1 (V2+V1) m2 = 0.55m1 m2 = 0.45m1arrow_forward
- In both cases shown in the diagram below, a block is floating at rest in a liquid. The liquids in the two beakers have the same density, that is, PA = PB. Both blocks have 55% of their volume below the surface, but the volumes of the blocks are not the same. Find the mass m2 in terms of V1, V2, and m1. Block 1 Block 2 mi m2 РА Рв Vị m2 = mị V, V2 m2 = mj Vị (V2–V1) (V2+V1), m2 = mj m2 = 0.55mị m2 = 0.45mịarrow_forwardAre the ships in the preceding question sucked together or pushed together? Explain.arrow_forwardIn the figure below, containers of different shapes contain the same liquid. The difference in pressure between the depths of x and y is A B C X----- y----- greatest for the cylinder with the smallest diameter same for all containers greatest for the cylinder with the biggest diameter darrow_forward
- Helpppparrow_forwardModel of maximum walking speed. A walking person is modelled as a mass m and its center of gravity rotates around a circle of radius l (leg+hip length) with a speed v. The leg touches the ground. The speed v of the walking person is at the top of the trajectory. Derive the maximum speed v that still allows contact with the ground. Express it in terms of the variables. Consider now that the system is submerged in a liquid. Model the effect of the liquid as a buoyant force that is x fraction of the weight force. Neglect moment of inertia and derive the new “walking speed” in terms of x and the variables. Neglect drag.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON