1. A coin having a mass of m = 12 g, a thickness of h = 0.17 cm, and a radius of r= 1.5 cm has a small hole drilled through it so that it can be suspended from a thin wire and worn as an earring or pendant. The hole is at a distance of 7/8 r from the center of the coin as shown above. When suspended from this hole, the coin is a physical pendulum that swings back and forth with this hole as its axis of rotation. Assuming that the hole does not appreciably change the center of mass of the coin, determine the period of this physical pendulum.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter12: Oscillatory Motion
Section: Chapter Questions
Problem 59P: A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is...
icon
Related questions
icon
Concept explainers
Topic Video
Question
1. A coin having a mass of m = 12 g, a thickness of h = 0.17 cm, and a radius of r= 1.5 cm has a
small hole drilled through it so that it can be suspended from a thin wire and worn as an earring
or pendant. The hole is at a distance of 7/8 r from the center of the coin as shown above. When
suspended from this hole, the coin is a physical pendulum that swings back and forth with this
hole as its axis of rotation. Assuming that the hole does not appreciably change the center of
mass of the coin, determine the period of this physical pendulum.
Transcribed Image Text:1. A coin having a mass of m = 12 g, a thickness of h = 0.17 cm, and a radius of r= 1.5 cm has a small hole drilled through it so that it can be suspended from a thin wire and worn as an earring or pendant. The hole is at a distance of 7/8 r from the center of the coin as shown above. When suspended from this hole, the coin is a physical pendulum that swings back and forth with this hole as its axis of rotation. Assuming that the hole does not appreciably change the center of mass of the coin, determine the period of this physical pendulum.
Expert Solution
steps

Step by step

Solved in 3 steps with 7 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning