Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question
100%

Please help to calculate the partial derivatives for problem #14. Thanks 

### Calculating First-Order Partial Derivatives

#### In Exercises 1–22, find ∂f/∂x and ∂f/∂y.

1. \( f(x, y) = 2x^2 - 3y - 4 \)
2. \( f(x, y) = x^2 - xy + y^2 \)
3. \( f(x, y) = (x^2 - 1)(y + 2) \)
4. \( f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2 \)
5. \( f(x, y) = (xy - 1)^2 \)
6. \( f(x, y) = (2x - 3y)^3 \)
7. \( f(x, y) = \sqrt{x^2 + y^2} \)
8. \( f(x, y) = (x^3 + \frac{y}{2})^{2/3} \)
9. \( f(x, y) = \frac{1}{x + y} \)
10. \( f(x, y) = \frac{x}{x^2 + y^2} \)
11. \( f(x, y) = \frac{x + y}{xy - 1} \)
12. \( f(x, y) = \tan^{-1}(\frac{y}{x}) \)
13. \( f(x, y) = e^{x + y + 1} \)
14. \( f(x, y) = e^{-x} \sin(x + y) \)
15. \( f(x, y) = \ln(x + y) \)
16. \( f(x, y) = e^{xy} \ln y \)
17. \( f(x, y) = \sin^2(x - 3y) \)
18. \( f(x, y) = \cos^2(3x - y^2) \)

In this set of exercises, you are to calculate the first-order partial derivatives of each given function \( f(x, y) \) with respect to both \( x \) and \( y \). 

### Explanation

Partial derivatives are used to measure how a function changes as each of its input variables changes while the other variables are held constant
expand button
Transcribed Image Text:### Calculating First-Order Partial Derivatives #### In Exercises 1–22, find ∂f/∂x and ∂f/∂y. 1. \( f(x, y) = 2x^2 - 3y - 4 \) 2. \( f(x, y) = x^2 - xy + y^2 \) 3. \( f(x, y) = (x^2 - 1)(y + 2) \) 4. \( f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2 \) 5. \( f(x, y) = (xy - 1)^2 \) 6. \( f(x, y) = (2x - 3y)^3 \) 7. \( f(x, y) = \sqrt{x^2 + y^2} \) 8. \( f(x, y) = (x^3 + \frac{y}{2})^{2/3} \) 9. \( f(x, y) = \frac{1}{x + y} \) 10. \( f(x, y) = \frac{x}{x^2 + y^2} \) 11. \( f(x, y) = \frac{x + y}{xy - 1} \) 12. \( f(x, y) = \tan^{-1}(\frac{y}{x}) \) 13. \( f(x, y) = e^{x + y + 1} \) 14. \( f(x, y) = e^{-x} \sin(x + y) \) 15. \( f(x, y) = \ln(x + y) \) 16. \( f(x, y) = e^{xy} \ln y \) 17. \( f(x, y) = \sin^2(x - 3y) \) 18. \( f(x, y) = \cos^2(3x - y^2) \) In this set of exercises, you are to calculate the first-order partial derivatives of each given function \( f(x, y) \) with respect to both \( x \) and \( y \). ### Explanation Partial derivatives are used to measure how a function changes as each of its input variables changes while the other variables are held constant
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning